MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Generalized Iterated Poisson Process and Applications
Generalized Iterated Poisson Process and Applications
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Generalized Iterated Poisson Process and Applications
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Generalized Iterated Poisson Process and Applications
Generalized Iterated Poisson Process and Applications

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Generalized Iterated Poisson Process and Applications
Generalized Iterated Poisson Process and Applications
Journal Article

Generalized Iterated Poisson Process and Applications

2024
Request Book From Autostore and Choose the Collection Method
Overview
In this paper, we consider the composition of a homogeneous Poisson process with an independent time-fractional Poisson process. We call this composition the generalized iterated Poisson process (GIPP). The probability law in terms of the fractional Bell polynomials, governing fractional differential equations, and the compound representation of the GIPP are obtained. We give explicit expressions for mean and covariance and study the long-range dependence property of the GIPP. It is also shown that the GIPP is over-dispersed. Some results related to first-passage time distribution and the hitting probability are also examined. We define the compound and the multivariate versions of the GIPP and explore their main characteristics. Further, we consider a surplus model based on the compound version of the iterated Poisson process (IPP) and derive several results related to ruin theory. Its applications using the Poisson–Lindley and the zero-truncated geometric distributions are also provided. Finally, simulated sample paths for the IPP and the GIPP are presented.