MbrlCatalogueTitleDetail

Do you wish to reserve the book?
ANT-KT: Adaptive NAS Transformers for Knowledge Tracing
ANT-KT: Adaptive NAS Transformers for Knowledge Tracing
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
ANT-KT: Adaptive NAS Transformers for Knowledge Tracing
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
ANT-KT: Adaptive NAS Transformers for Knowledge Tracing
ANT-KT: Adaptive NAS Transformers for Knowledge Tracing

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
ANT-KT: Adaptive NAS Transformers for Knowledge Tracing
ANT-KT: Adaptive NAS Transformers for Knowledge Tracing
Journal Article

ANT-KT: Adaptive NAS Transformers for Knowledge Tracing

2025
Request Book From Autostore and Choose the Collection Method
Overview
Knowledge Tracing aims to assess students’ mastery of knowledge concepts in real time, playing a crucial role in providing personalized learning services in intelligent tutoring systems. In recent years, researchers have attempted to introduce Neural Architecture Search (NAS) into knowledge tracing tasks to automatically design more efficient network structures. However, existing NAS-based methods for Knowledge Tracing suffer from excessively large search spaces and slow search efficiency, which significantly constrain their practical applications. To address these limitations, this paper proposes an Adaptive Neural Architecture Search framework based on Transformers for KT, called ANT-KT. Specifically, we design an enhanced encoder that combines convolution operations with state vectors to capture both local and global dependencies in students’ learning sequences. Moreover, an optimized decoder with a linear attention mechanism is introduced to improve the efficiency of modeling long-term student knowledge state evolution. We further propose an evolutionary NAS algorithm that incorporates a model optimization efficiency objective and a dynamic search space reduction strategy, enabling the discovery of high-performing yet computationally efficient architectures. Experimental results on two large-scale real-world datasets, EdNet and RAIEd2020, demonstrate that ANT-KT significantly reduces time costs across all stages of NAS while achieving performance improvements on multiple evaluation metrics, validating the efficiency and practicality of the proposed method.