MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Symmetrical Simulation Scheme for Anomaly Detection in Autonomous Vehicles Based on LSTM Model
Symmetrical Simulation Scheme for Anomaly Detection in Autonomous Vehicles Based on LSTM Model
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Symmetrical Simulation Scheme for Anomaly Detection in Autonomous Vehicles Based on LSTM Model
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Symmetrical Simulation Scheme for Anomaly Detection in Autonomous Vehicles Based on LSTM Model
Symmetrical Simulation Scheme for Anomaly Detection in Autonomous Vehicles Based on LSTM Model

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Symmetrical Simulation Scheme for Anomaly Detection in Autonomous Vehicles Based on LSTM Model
Symmetrical Simulation Scheme for Anomaly Detection in Autonomous Vehicles Based on LSTM Model
Journal Article

Symmetrical Simulation Scheme for Anomaly Detection in Autonomous Vehicles Based on LSTM Model

2022
Request Book From Autostore and Choose the Collection Method
Overview
Technological advancement has transformed traditional vehicles into autonomous vehicles. Autonomous vehicles play an important role since they are considered an essential component of smart cities. The autonomous vehicle is an intelligent vehicle capable of maintaining safe driving by avoiding crashes caused by drivers. Unlike traditional vehicles, which are fully controlled and operated by humans, autonomous vehicles collect information about the outside environment using sensors to ensure safe navigation. Autonomous vehicles reduce environmental impact because they usually use electricity to operate instead of fossil fuel, thus decreasing the greenhouse gasses. However, autonomous vehicles could be threatened by cyberattacks, posing risks to human life. For example, researchers reported that Wi-Fi technology could be vulnerable to cyberattacks through Tesla and BMW autonomous vehicles. Therefore, further research is needed to detect cyberattacks targeting the control components of autonomous vehicles to mitigate their negative consequences. This research will contribute to the security of autonomous vehicles by detecting cyberattacks in the early stages. First, we inject False Data Injection (FDI) attacks into an autonomous vehicle simulation-based system developed by MathWorks. Inc. Second, we collect the dataset generated from the simulation model after integrating the cyberattack. Third, we implement an intelligent symmetrical anomaly detection method to identify false data cyber-attacks targeting the control system of autonomous vehicles through a compromised sensor. We utilize long short-term memory (LSTM) deep networks to detect False Data Injection (FDI) attacks in the early stage to ensure the stability of the operation of autonomous vehicles. Our method classifies the collected dataset into two classifications: normal and anomaly data. The experimental result shows that our proposed model’s accuracy is 99.95%. To this end, the proposed model outperforms other state-of-the-art models in the same study area.