MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Machine-Learning-Based Emission Models in Gasoline Powertrains—Part 2: Virtual Carbon Monoxide
Machine-Learning-Based Emission Models in Gasoline Powertrains—Part 2: Virtual Carbon Monoxide
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Machine-Learning-Based Emission Models in Gasoline Powertrains—Part 2: Virtual Carbon Monoxide
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Machine-Learning-Based Emission Models in Gasoline Powertrains—Part 2: Virtual Carbon Monoxide
Machine-Learning-Based Emission Models in Gasoline Powertrains—Part 2: Virtual Carbon Monoxide

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Machine-Learning-Based Emission Models in Gasoline Powertrains—Part 2: Virtual Carbon Monoxide
Machine-Learning-Based Emission Models in Gasoline Powertrains—Part 2: Virtual Carbon Monoxide
Journal Article

Machine-Learning-Based Emission Models in Gasoline Powertrains—Part 2: Virtual Carbon Monoxide

2023
Request Book From Autostore and Choose the Collection Method
Overview
In this work, tailpipe carbon monoxide emission from a gasoline powertrain case study vehicle was analyzed for off-cycle (i.e., on road) driving to develop a virtual sensor. The vehicle was equipped with a portable emissions measurement system (PEMS) that measured carbon monoxide concentration and exhaust volumetric flowrate to calculate the mass of carbon monoxide emitted from the tailpipe. The vehicle was also equipped with a tailpipe electrochemical NOx sensor, and a correlation between its linear oxygen signal and the PEMS-measured carbon monoxide concentration was observed. The NOx sensor linear oxygen signal depends on the concentration of several reducing species, and a machine learning model was trained using this data and other features to target the PEMS-measured carbon monoxide mass emission. The model demonstrated a mean absolute percentage error (MAPE) of 19% when using 15 training drive cycles. Finally, a virtual carbon monoxide sensor was developed by removing the tailpipe NOx sensor information from the model feature set and predicting tailpipe carbon monoxide mass. The virtual model MAPE was shown to increase by 5% compared to the earlier version with a tailpipe NOx sensor over the same number of training, validation, and test drive cycles. The minimal degradation in accuracy for the virtual model was hypothesized to result from the fact that narrowband oxygen sensors may contain information regarding how rich or lean the exhaust gas is compared to stoichiometric conditions. This is analogous to the information provided by a wide-band oxygen sensor, but potentially with reduced resolution and accuracy. The data-driven approach was able to produce a novel virtual tailpipe carbon monoxide sensor in a gasoline powertrain using only common powertrain and emission sensors.