MbrlCatalogueTitleDetail

Do you wish to reserve the book?
A novel virtual-communicated evolution learning recommendation
A novel virtual-communicated evolution learning recommendation
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
A novel virtual-communicated evolution learning recommendation
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
A novel virtual-communicated evolution learning recommendation
A novel virtual-communicated evolution learning recommendation

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
A novel virtual-communicated evolution learning recommendation
A novel virtual-communicated evolution learning recommendation
Journal Article

A novel virtual-communicated evolution learning recommendation

2024
Request Book From Autostore and Choose the Collection Method
Overview
PurposeIn this “Info-plosion” era, recommendation systems (or recommenders) play a significant role in finding interesting items in the surge of online digital activity and e-commerce. The purpose of this paper is to model users' preference evolution to recommend potential items which users may be interested in.Design/methodology/approachA novel recommendation system, namely evolution-learning recommendation (ELR), is developed to precisely predict user interest for making recommendations. Differing from prior related methods, the authors integrate the matrix factorization (MF) and recurrent neural network (RNN) to effectively describe the variation of user preferences over time.FindingsA novel cumulative factorization technique is proposed to efficiently decompose a rating matrix for discovering latent user preferences. Compared to traditional MF-based methods, the cumulative MF could reduce the utilization of computation resources. Furthermore, the authors depict the significance of long- and short-term effects in the memory cell of RNN for evolution patterns. With the context awareness, a learning model, V-LSTM, is developed to dynamically capture the evolution pattern of user interests. By using a well-trained learning model, the authors predict future user preferences and recommend related items.Originality/valueBased on the relations among users and items for recommendation, the authors introduce a novel concept, virtual communication, to effectively learn and estimate the correlation among users and items. By incorporating the discovered latent features of users and items in an evolved manner, the proposed ELR model could promote “right” things to “right” users at the “right” time. In addition, several extensive experiments are performed on real datasets and are discussed. Empirical results show that ELR significantly outperforms the prior recommendation models. The proposed ELR exhibits great generalization and robustness in real datasets, including e-commerce, industrial retail and streaming service, with all discussed metrics.
Publisher
Emerald Publishing Limited,Emerald Group Publishing Limited