MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Tailoring interlayer spacing in MXene cathodes to boost the desalination performance of hybrid capacitive deionization systems
Tailoring interlayer spacing in MXene cathodes to boost the desalination performance of hybrid capacitive deionization systems
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Tailoring interlayer spacing in MXene cathodes to boost the desalination performance of hybrid capacitive deionization systems
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Tailoring interlayer spacing in MXene cathodes to boost the desalination performance of hybrid capacitive deionization systems
Tailoring interlayer spacing in MXene cathodes to boost the desalination performance of hybrid capacitive deionization systems

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Tailoring interlayer spacing in MXene cathodes to boost the desalination performance of hybrid capacitive deionization systems
Tailoring interlayer spacing in MXene cathodes to boost the desalination performance of hybrid capacitive deionization systems
Journal Article

Tailoring interlayer spacing in MXene cathodes to boost the desalination performance of hybrid capacitive deionization systems

2023
Request Book From Autostore and Choose the Collection Method
Overview
Capacitive deionization (CDI) is a promising technology to satisfy the global need for fresh water, since it can be both economical and sustainable. While two-dimensional transition metal carbides/nitrides (MXenes) exhibit great characteristics for use as CDI electrode materials, their tightly spaced layered structure renders intercalation inefficiency. In this study, the interlayer distance of MXenes is precisely modulated by inserting different quantity of one-dimensional bacterial fibers (BC), forming freestanding MXene/BC composite electrodes. Among the studied samples, MXene/BC-33% electrode with the interlayer spacing of 15.2 Å can achieve an optimized tradeoff among various desalination performance metrics and indicators. The salt adsorption capacity (SAC), the average salt adsorption rate (ASAR), the energy normalized adsorbed salt (ENAS), and the thermodynamic energy efficiency (TEE) of the MXene/BC-33% electrode are improved by 24%, 46%, 13%, and 66% respectively compared with those of pure MXene electrode. While the insertion of BC improves the ion diffusion pathways and facilitates the intercalation kinetics, the desalination performance decreases when the insertion amount of BC exceeds 40%. This is attributed to the overlarge resistance of the composite and the resulting increased energy consumption. This study reveals the desalination performance tradeoffs of MXene-based electrodes with different interlayer distances and also sheds light on the fundamental ion storage mechanisms of intercalation materials in a CDI desalination system.