MbrlCatalogueTitleDetail

Do you wish to reserve the book?
The joint driving effects of climate and weather changes caused the Chamoli glacier-rock avalanche in the high altitudes of the India Himalaya
The joint driving effects of climate and weather changes caused the Chamoli glacier-rock avalanche in the high altitudes of the India Himalaya
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
The joint driving effects of climate and weather changes caused the Chamoli glacier-rock avalanche in the high altitudes of the India Himalaya
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
The joint driving effects of climate and weather changes caused the Chamoli glacier-rock avalanche in the high altitudes of the India Himalaya
The joint driving effects of climate and weather changes caused the Chamoli glacier-rock avalanche in the high altitudes of the India Himalaya

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
The joint driving effects of climate and weather changes caused the Chamoli glacier-rock avalanche in the high altitudes of the India Himalaya
The joint driving effects of climate and weather changes caused the Chamoli glacier-rock avalanche in the high altitudes of the India Himalaya
Journal Article

The joint driving effects of climate and weather changes caused the Chamoli glacier-rock avalanche in the high altitudes of the India Himalaya

2021
Request Book From Autostore and Choose the Collection Method
Overview
Ice avalanches are one of the most devastating mountain hazards, and can pose a great risk to the security of the surrounding area. Although ice avalanches have been widely observed in mountainous regions around the world, only a few ice avalanche events have been studied comprehensively, due to the lack of available data. In this study, in response to the recent catastrophic rock-ice avalanche (7 February 2021) at Chamoli in the India Himalaya, we used high-resolution satellite images and found that this event was actually a glacier-rock landslide, where the collapse of the rock-ice body was caused by the sliding of the bedrock beneath the glacier, for which the source area and volume loss were about 2.89×10 5 m 2 and 2.46×10 7 m 3 , respectively, corresponding to an average elevation change of about -85 m. Furthermore, visual analysis of the dense time-series satellite images shows that the overall downward sliding of the collapsed rock-ice body initiated around the summer of 2017, and thereafter exhibited clear seasonality (mainly in summer). Meteorological analysis reveals a strong rainfall anomaly in the initiation period of the sliding and a remarkable winter warming anomaly in the 40 days before the collapse. Comparisons of multi-temporal digital elevation models (DEMs) further suggest that the glacier geometry in the collapsed areas was likely changing (i.e., accelerated surface thinning in the lower part of the glaciers and insignificant change in the upper part), which is consistent with the region-wide climate warming. Finally, by combining the above findings and a geomorphic analysis, we conclude that the rock-ice avalanche event was mainly caused by the joint effects of climate and weather changes acting on a steeply sloping and fracture-prone geological condition. The findings of this study provide new and valuable evidence for the study of slope/glacier instability at high altitudes. This study also highlights that, for the Himalaya and other high mountain ranges, there is an urgent need to identify the glaciers that have a high risk of ice avalanches.