MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Real-time cutting tool condition assessment and stochastic tool life predictive models for tool reliability estimation by in-process cutting tool vibration monitoring
Real-time cutting tool condition assessment and stochastic tool life predictive models for tool reliability estimation by in-process cutting tool vibration monitoring
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Real-time cutting tool condition assessment and stochastic tool life predictive models for tool reliability estimation by in-process cutting tool vibration monitoring
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Real-time cutting tool condition assessment and stochastic tool life predictive models for tool reliability estimation by in-process cutting tool vibration monitoring
Real-time cutting tool condition assessment and stochastic tool life predictive models for tool reliability estimation by in-process cutting tool vibration monitoring

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Real-time cutting tool condition assessment and stochastic tool life predictive models for tool reliability estimation by in-process cutting tool vibration monitoring
Real-time cutting tool condition assessment and stochastic tool life predictive models for tool reliability estimation by in-process cutting tool vibration monitoring
Journal Article

Real-time cutting tool condition assessment and stochastic tool life predictive models for tool reliability estimation by in-process cutting tool vibration monitoring

2023
Request Book From Autostore and Choose the Collection Method
Overview
Real-time tool wear prediction and its remaining useful life (RUL) estimation is an important part of the development of a smart machining system while it is practically complex. A two-step framework proposed based on the statistical correlation of the experimentally measured cutting tool vibration data with the flank wear progression and estimation of the cutting tool RUL by the construction of stochastic tool life probability predictive models. The machining experiments are conducted on the IN718 superalloy with uncoated WC tools under the varied conditions of cutting speed and feed to acquire the data of flank wear and associated tool vibration data. The results of confirmation experiments show the statistical correlation constructed is practically viable for in-process flank wear prediction at any time of instance during machining with any set cutting conditions using the real-time tool vibration monitoring. The in-process observation of 1.5 g tool acceleration during machining with 60 m/min cutting speed and 0.1 mm/tooth feed signifies 15% of the cutting tool failure probability, and its remaining useful life is 12.91 min. For 50% of tool reliability machining with 0.1 mm/tooth feed and 60, 90 and 120 m/min cutting speed, tool accelerations of 2.01, 3.08 and 3.98 g reflect that the respective exhausted tool lives are 12, 8 and 6 min and the respective remaining useful lives are 8, 6 and 5 min. Hence, based on the presented analysis and results, it is envisaged the proposed framework is reliable and robust for in-process cutting tool condition prediction based on the real-time tool vibration monitoring for its adoption to develop a smart machining system with autonomous decision-making capability.