MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Second law analysis of magneto-natural convection in a nanofluid filled wavy-hexagonal porous enclosure
Second law analysis of magneto-natural convection in a nanofluid filled wavy-hexagonal porous enclosure
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Second law analysis of magneto-natural convection in a nanofluid filled wavy-hexagonal porous enclosure
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Second law analysis of magneto-natural convection in a nanofluid filled wavy-hexagonal porous enclosure
Second law analysis of magneto-natural convection in a nanofluid filled wavy-hexagonal porous enclosure

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Second law analysis of magneto-natural convection in a nanofluid filled wavy-hexagonal porous enclosure
Second law analysis of magneto-natural convection in a nanofluid filled wavy-hexagonal porous enclosure
Journal Article

Second law analysis of magneto-natural convection in a nanofluid filled wavy-hexagonal porous enclosure

2020
Request Book From Autostore and Choose the Collection Method
Overview
Purpose Natural convection heat transfer analysis can be completed using entropy generation analysis. This study aims to accomplish both the natural convection heat transfer and entropy generation analyses for a hexagonal cavity loaded with Cu-H2O nanoliquid subjected to an oriented magnetic field. Design/methodology/approach Control volume-based finite element method is applied to solve the non-dimensional forms of governing equations and then, the entropy generation number is computed. Findings The results portray that both the average Nusselt and entropy generation numbers boost with increasing aspect ratio for each value of the undulation number, while both of them decrease with increasing the undulation number for each amplitude parameter. There is a maximum value for the entropy generation number at a specified value of Hartmann number. Also, there is a minimum value for the entropy generation number at a specified value of angle of the magnetic field. When the volume fraction of nanoparticles grows, the average Nusselt number increases and the entropy generation number declines. The entropy generation number attains to a maximum value at Ha = 14 for each value of aspect ratio. The average Nusselt number ascends 2.9 per cent and entropy generation number decreases 1.3 per cent for Ha = 0 when ϕ increases from 0 to 4 per cent. Originality/value A hexagonal enclosure (complex geometry), which has many industrial applications, is chosen in this study. Not only the characteristics of heat transfer are investigated but also entropy generation analysis is performed in this study. The ecological coefficient of performance for enclosures is calculated, too.