MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Agricultural Water Allocation by Integration of Hydro-Economic Modeling with Bayesian Networks and Random Forest Approaches
Agricultural Water Allocation by Integration of Hydro-Economic Modeling with Bayesian Networks and Random Forest Approaches
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Agricultural Water Allocation by Integration of Hydro-Economic Modeling with Bayesian Networks and Random Forest Approaches
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Agricultural Water Allocation by Integration of Hydro-Economic Modeling with Bayesian Networks and Random Forest Approaches
Agricultural Water Allocation by Integration of Hydro-Economic Modeling with Bayesian Networks and Random Forest Approaches

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Agricultural Water Allocation by Integration of Hydro-Economic Modeling with Bayesian Networks and Random Forest Approaches
Agricultural Water Allocation by Integration of Hydro-Economic Modeling with Bayesian Networks and Random Forest Approaches
Journal Article

Agricultural Water Allocation by Integration of Hydro-Economic Modeling with Bayesian Networks and Random Forest Approaches

2019
Request Book From Autostore and Choose the Collection Method
Overview
Sustainable utilization of water resources requires preventive measures that must be taken to promote optimal use of water resources together with consideration of stakeholder interests and the economic value of water. The main objective of this study is to present an integrated hydro-economic model for allocating agricultural water based on its economic value. The study region covered six irrigation networks downstream of the Zayandeh Rood Dam in Iran. In fact, this study addresses questions of how to allocate scarce water to different consumers, in order to achieve the highest efficiency and economic benefits. To gain this goal, the existing agricultural activities in each irrigation network were simulated by applying the Positive Mathematical Programming (PMP) economic model and then by coupling the economic model with a water allocation planning model of the basin (MODSIM), the hydro-economic framework was generated. These tools helped to allocate water based on its economic value, maximize net profit by determining the optimal cultivating area and analyze the effects of various allocation scenarios on employment, economic productivity, and reliability indicators. Moreover, Bayesian Networks and Random Forest algorithms were developed as an automated substitute to simplify the process and reduce computational complexity. The results showed that the Nekoabad Network enjoys top priority followed by the Barkhar, Mahyar, Sonati, Abshar, and Rodasht Networks. After implementing the Bayesian Network, the four criteria of MAE, MAPE, R2, and the Nash-Sutcliffe index for the irrigation networks were 9 MCM, 24%, 0.738, and 0.644 respectively, which indicated the model has good accuracy. Random Forest method was also employed as a novel technique in automated allocation, and the values obtained for the four mentioned criteria were 7 MCM, 15%, 0.861, and 0.80, which showed it is more accurate. The results indicated the capability of the presented hydro-economic model as well as the intelligent models substituting it in allocating agricultural water.