Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
Accuracy of intraocular lens power calculation in primary angle-closure disease: comparison of 7 formulas
by
Liu, Xing
, Li, Jianbing
, Wu, Mingxing
, Liu, Liangping
, Hou, Min
, Ding Yujie
in
Accuracy
/ Ophthalmology
/ Refraction
2021
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Accuracy of intraocular lens power calculation in primary angle-closure disease: comparison of 7 formulas
by
Liu, Xing
, Li, Jianbing
, Wu, Mingxing
, Liu, Liangping
, Hou, Min
, Ding Yujie
in
Accuracy
/ Ophthalmology
/ Refraction
2021
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Accuracy of intraocular lens power calculation in primary angle-closure disease: comparison of 7 formulas
Journal Article
Accuracy of intraocular lens power calculation in primary angle-closure disease: comparison of 7 formulas
2021
Request Book From Autostore
and Choose the Collection Method
Overview
PurposeTo assess the accuracy of intraocular lens power calculation formulas Barrett Universal II (BUII), Hill-Radial Basis Function (RBF) 3.0, Kane, Ladas Super Formula (LSF), Haigis, Hoffer Q, and SRK/T in primary angle-closure disease (PACD).MethodsA total of 129 PACD eyes were enrolled. Prediction refraction was calculated for each formula and compared with actual refraction. Accuracy was determined by formula performance index (FPI), median absolute error (MedAE) and percentage of eyes with a prediction error (PE) within ± 0.50D. Subgroup analysis was performed according to axial length (AL).ResultsOverall, FPI was ranked as follows: Kane (0.067), RBF 3.0 (0.064), Haigis (0.062), SRK/T (0.060), BUII (0.058), Hoffer Q (0.055), and LSF (0.049). Kane got the highest (71.3%) percentage of eyes with PE within ± 0.50 D. In medium AL eyes (22 mm < AL ≤ 25 mm), FPI ranked the same as in total group. MedAEs were equal across all formulas (P = 0.121). In short eyes (AL ≤ 22 mm), FPI was Kane (0.055), RBF 3.0 (0.050), SRK/T (0.050), Haigis (0.049), BUII (0.047), Hoffer Q (0.045), and LSF (0.033). MedAEs were significantly different across all formulas (P = 0.033). Haigis showed the lowest MedAE (0.35 D), Haigis and Kane got the highest percentage (63.6%) of eyes with PE within ± 0.50 D.ConclusionKane outperformed in total PACD eyes; RBF 3.0, Haigis, and SRK/T achieved satisfying performance. When dealing with PACD eyes shorter than 22 mm, Kane achieved the best accuracy. RBF 3.0, SRK/T, Haigis, and BUII achieved comparable outcomes. No formula showed superiority over others for medium AL PACD eyes.
Publisher
Springer Nature B.V
Subject
MBRLCatalogueRelatedBooks
Related Items
Related Items
This website uses cookies to ensure you get the best experience on our website.