MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Are silver nanoparticles the “silver bullet” to promote diterpene production in Stevia rebaudiana?
Are silver nanoparticles the “silver bullet” to promote diterpene production in Stevia rebaudiana?
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Are silver nanoparticles the “silver bullet” to promote diterpene production in Stevia rebaudiana?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Are silver nanoparticles the “silver bullet” to promote diterpene production in Stevia rebaudiana?
Are silver nanoparticles the “silver bullet” to promote diterpene production in Stevia rebaudiana?

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Are silver nanoparticles the “silver bullet” to promote diterpene production in Stevia rebaudiana?
Are silver nanoparticles the “silver bullet” to promote diterpene production in Stevia rebaudiana?
Journal Article

Are silver nanoparticles the “silver bullet” to promote diterpene production in Stevia rebaudiana?

2023
Request Book From Autostore and Choose the Collection Method
Overview
S. rebaudiana is a sought after sweetener because of its low-calorie properties. However, the supply of suitable quantities of high quality propagation material is limited by inefficient propagation methods using conventional strategies. In vitro techniques combined with nanotechnology tools offer an attractive alternative not only for improved propagation but also for the stimulation of secondary metabolites which represent the targeted sweetener product for this crop. This report provides an evaluation of silver nanoparticles applied in temporary immersion bioreactors for the abovementioned purpose. Different levels of AgNPs were supplied (0.0—37.5 mg/L) and after 21 d of growth, morphological and biochemical indicators were evaluated. Silver nanoparticles at 25 and 37.5 mg/L decreased shoot multiplication rate, shoot length, and the number of nodes and leaves per shoot compared with the control while no adverse effect was found at the lower tested concentration (12.5 mg/L). Shoot fresh and dry weights also showed statistically significant differences. Regarding the biochemical phenotypes, chlorophyll a, carotenoids and soluble phenolics were increased in plants supplied with 25 mg/L AgNPs, with the latter two indicators suggesting oxidative stress. Interestingly, endogenous levels of diterpenes were significantly increased with the application of 12.5 mg/L AgNPs. It is suggested that AgNPs show potential to act as elicitors to promote the production of diterpenes in stevia but that further work is required to understand the balance between oxidative damage and secondary metabolite production and that optimization of the protocol is required to improve the propagation potential of this strategy.Key messageIt is suggested that AgNPs show potential to act as elicitors to promote the production of diterpenes in stevia but that further work is required to understand the balance between oxidative damage and secondary metabolite production and that optimization of the protocol is required to improve the propagation potential of this strategy.

MBRLCatalogueRelatedBooks