MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Invariant Extended Kalman Filtering for Pedestrian Deep-Inertial Odometry
Invariant Extended Kalman Filtering for Pedestrian Deep-Inertial Odometry
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Invariant Extended Kalman Filtering for Pedestrian Deep-Inertial Odometry
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Invariant Extended Kalman Filtering for Pedestrian Deep-Inertial Odometry
Invariant Extended Kalman Filtering for Pedestrian Deep-Inertial Odometry

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Invariant Extended Kalman Filtering for Pedestrian Deep-Inertial Odometry
Invariant Extended Kalman Filtering for Pedestrian Deep-Inertial Odometry
Journal Article

Invariant Extended Kalman Filtering for Pedestrian Deep-Inertial Odometry

2024
Request Book From Autostore and Choose the Collection Method
Overview
Indoor localization for pedestrians, which relies solely on inertial odometry, has been a topic of great interest. Its significance lies in its ability to provide positioning solutions independently, without the need for external data. Although traditional strap-down inertial navigation shows rapid drift, the introduction of pedestrian dead reckoning (PDR), and artificial intelligence (AI) has enhanced the applicability of inertial odometry for indoor localization. However, inertial odometry continues to be affected by drift, inherent to the nature of dead reckoning. This implies that even a slight error at a given moment can lead to a significant decrease in accuracy after continuous integration operations. In this paper, we propose a novel approach aimed at enhancing the positioning accuracy of inertial odometry. Firstly, we derive a learning-based forward speed using inertial measurements from a smartphone. Unlike mainstream methods where the learned speed is directly used to determine the position, we use the forward speed combined with non-holonomic constraint (NHC) as a measurement to update the state predicted within a strap-down inertial navigation framework. Secondly, we employ an invariant extended Kalman filter (IEKF)-based state estimation to facilitate fusion to cope with the nonlinearity arising from the system and measurement model. Experimental tests are carried out in different scenarios using an iPhone 12, and traditional methods, including PDR, robust neural inertial navigation (RONIN), and the EKF-based method, are compared. The results suggest that the method we propose surpasses these traditional methods in performance.