MbrlCatalogueTitleDetail

Do you wish to reserve the book?
VMD-LSTM-Based Model Predictive Control for Hybrid Energy Storage Systems with Auto-Tuning Weights and Constraints
VMD-LSTM-Based Model Predictive Control for Hybrid Energy Storage Systems with Auto-Tuning Weights and Constraints
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
VMD-LSTM-Based Model Predictive Control for Hybrid Energy Storage Systems with Auto-Tuning Weights and Constraints
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
VMD-LSTM-Based Model Predictive Control for Hybrid Energy Storage Systems with Auto-Tuning Weights and Constraints
VMD-LSTM-Based Model Predictive Control for Hybrid Energy Storage Systems with Auto-Tuning Weights and Constraints

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
VMD-LSTM-Based Model Predictive Control for Hybrid Energy Storage Systems with Auto-Tuning Weights and Constraints
VMD-LSTM-Based Model Predictive Control for Hybrid Energy Storage Systems with Auto-Tuning Weights and Constraints
Journal Article

VMD-LSTM-Based Model Predictive Control for Hybrid Energy Storage Systems with Auto-Tuning Weights and Constraints

2025
Request Book From Autostore and Choose the Collection Method
Overview
Enhancing ultra-capacitor (UC) utilization and mitigating battery stress are pivotal for improving the energy management efficiency and service life of hybrid energy storage systems (HESSs). Conventional energy management strategies (EMSs), however, rely on fixed parameters and therefore struggle to allocate power flexibly or reduce battery degradation. This paper proposes a VMD-LSTM-based EMS that incorporates auto-tuning weight and constraint to address these limitations. First, a VMD-LSTM predictor was proposed to improve the velocity and road gradient prediction accuracy, thus leading an accurate power demand for EMS and enabling real-time parameter adaptation, especially in the nonlinear area. Second, the model predictive controller (MPC) was adopted to construct the EMS by solving a multi-objective problem using quadratic programming. Third, a combination of rule-based and fuzzy logic-based strategies was introduced to adjust the weights and constraints, optimizing UC utilization while alleviating the burden on batteries. Simulation results show that the proposed scheme boosts UC utilization by 10.98% and extends battery life by 19.75% compared to traditional MPC. These gains underscore the practical viability of intelligent, optimizing EMSs for HESSs.