MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Tradeoffs between UAS Spatial Resolution and Accuracy for Deep Learning Semantic Segmentation Applied to Wetland Vegetation Species Mapping
Tradeoffs between UAS Spatial Resolution and Accuracy for Deep Learning Semantic Segmentation Applied to Wetland Vegetation Species Mapping
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Tradeoffs between UAS Spatial Resolution and Accuracy for Deep Learning Semantic Segmentation Applied to Wetland Vegetation Species Mapping
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Tradeoffs between UAS Spatial Resolution and Accuracy for Deep Learning Semantic Segmentation Applied to Wetland Vegetation Species Mapping
Tradeoffs between UAS Spatial Resolution and Accuracy for Deep Learning Semantic Segmentation Applied to Wetland Vegetation Species Mapping

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Tradeoffs between UAS Spatial Resolution and Accuracy for Deep Learning Semantic Segmentation Applied to Wetland Vegetation Species Mapping
Tradeoffs between UAS Spatial Resolution and Accuracy for Deep Learning Semantic Segmentation Applied to Wetland Vegetation Species Mapping
Journal Article

Tradeoffs between UAS Spatial Resolution and Accuracy for Deep Learning Semantic Segmentation Applied to Wetland Vegetation Species Mapping

2022
Request Book From Autostore and Choose the Collection Method
Overview
Recent advances in image classification of fine spatial resolution imagery from unoccupied aircraft systems (UASs) have allowed for mapping vegetation based on both multispectral reflectance and fine textural details. Convolutional neural network (CNN)-based models can take advantage of the spatial detail present in UAS imagery by implicitly learning shapes and textures associated with classes to produce highly accurate maps. However, the spatial resolution of UAS data is infrequently examined in CNN classification, and there are important tradeoffs between spatial resolution and classification accuracy. To improve the understanding of the relationship between spatial resolution and classification accuracy for a CNN-based model, we captured 7.6 cm imagery with a UAS in a wetland environment containing graminoid (grass-like) plant species and simulated a range of spatial resolutions up to 76.0 cm. We evaluated two methods for the simulation of coarser spatial resolution imagery, averaging before and after orthomosaic stitching, and then trained and applied a U-Net CNN model for each resolution and method. We found untuned overall accuracies exceeding 70% at the finest spatial resolutions, but classification accuracy decreased as spatial resolution coarsened, particularly beyond a 22.8 cm resolution. Coarsening the spatial resolution from 7.6 cm to 22.8 cm could permit a ninefold increase in survey area, with only a moderate reduction in classification accuracy. This study provides insight into the impact of the spatial resolution on deep learning semantic segmentation performance and information that can potentially be useful for optimizing precise UAS-based mapping projects.

MBRLCatalogueRelatedBooks