MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Exploring of the Incompatibility of Marine Residual Fuel: A Case Study Using Machine Learning Methods
Exploring of the Incompatibility of Marine Residual Fuel: A Case Study Using Machine Learning Methods
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Exploring of the Incompatibility of Marine Residual Fuel: A Case Study Using Machine Learning Methods
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Exploring of the Incompatibility of Marine Residual Fuel: A Case Study Using Machine Learning Methods
Exploring of the Incompatibility of Marine Residual Fuel: A Case Study Using Machine Learning Methods

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Exploring of the Incompatibility of Marine Residual Fuel: A Case Study Using Machine Learning Methods
Exploring of the Incompatibility of Marine Residual Fuel: A Case Study Using Machine Learning Methods
Journal Article

Exploring of the Incompatibility of Marine Residual Fuel: A Case Study Using Machine Learning Methods

2021
Request Book From Autostore and Choose the Collection Method
Overview
Providing quality fuel to ships with reduced SOx content is a priority task. Marine residual fuels are one of the main sources of atmospheric pollution during the operation of ships and sea tankers. Hence, the International Maritime Organization (IMO) has established strict regulations for the sulfur content of marine fuels. One of the possible technological solutions allowing for adherence to the sulfur content limits is use of mixed fuels. However, it carries with it risks of ingredient incompatibilities. This article explores a new approach to the study of active sedimentation of residual and mixed fuels. An assessment of the sedimentation process during mixing, storage, and transportation of marine fuels is made based on estimation three-dimensional diagrams developed by the authors. In an effort to find the optimal solution, studies have been carried out to determine the influence of marine residual fuel compositions on sediment formation via machine learning algorithms. Thus, a model which can be used to predict incompatibilities in fuel compositions as well as sedimentation processes is proposed. The model can be used to determine the sediment content of mixed marine residual fuels with the desired sulfur concentration.