MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Federated AI-Enabled In-Vehicle Network Intrusion Detection for Internet of Vehicles
Federated AI-Enabled In-Vehicle Network Intrusion Detection for Internet of Vehicles
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Federated AI-Enabled In-Vehicle Network Intrusion Detection for Internet of Vehicles
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Federated AI-Enabled In-Vehicle Network Intrusion Detection for Internet of Vehicles
Federated AI-Enabled In-Vehicle Network Intrusion Detection for Internet of Vehicles

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Federated AI-Enabled In-Vehicle Network Intrusion Detection for Internet of Vehicles
Federated AI-Enabled In-Vehicle Network Intrusion Detection for Internet of Vehicles
Journal Article

Federated AI-Enabled In-Vehicle Network Intrusion Detection for Internet of Vehicles

2022
Request Book From Autostore and Choose the Collection Method
Overview
The integration of artificial intelligence (AI) technology into the Internet of Vehicles (IoV) has provided smart services for intelligent connected vehicles (ICVs). However, due to gradually upgrading to ICVs, an increasing number of external communications interfaces exposes the in-vehicle networks (IVNs) to malicious network intrusion. The malicious intruders can take over the compromised ICVs and mediately intrude into the ICVs connected through IoV. Therefore, it is urgent to develop IVN intrusion detection methods for IoV security protection. In this paper, a ConvLSTM-based IVN intrusion detection method is developed by leveraging the periodicity of the network message ID. For training the ConvLSTM model, a federated learning (FL) framework with client selection is proposed. The fundamental FL framework works in the client-server mode. ICVs are the local clients, and mobile edge computing (MEC) servers connected to base stations (BSs) function as the parameter servers. Based on the framework, a proximal policy optimization (PPO)-based federated client selection (FCS) scheme is further developed to optimize the model accuracy and system overhead of federated ConvLSTM model training. Simulations are conducted by the exploitation of real-world IoV scenario settings and IVN datasets. The results indicate that by exploiting the ConvLSTM, the model size and convergence time are dramatically reduced, and the 95%-beyond detection accuracy is maintained. The results also unveil that the PPO-based FCS scheme outperforms the benchmarks on the convergence rate, model accuracy, and system overhead.