MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Recurrence-based reconstruction of dynamic pricing attractors
Recurrence-based reconstruction of dynamic pricing attractors
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Recurrence-based reconstruction of dynamic pricing attractors
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Recurrence-based reconstruction of dynamic pricing attractors
Recurrence-based reconstruction of dynamic pricing attractors

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Recurrence-based reconstruction of dynamic pricing attractors
Recurrence-based reconstruction of dynamic pricing attractors
Journal Article

Recurrence-based reconstruction of dynamic pricing attractors

2023
Request Book From Autostore and Choose the Collection Method
Overview
Dynamic pricing depends on the understanding of uncertain demand. We ask the question whether a stochastic system is sufficient to model this uncertainty. We propose a novel paradigm based on statistical analysis of recurrence quantification measures. The paradigm fits nonlinear dynamics by simultaneously optimizing both the determinism and the trapping time in recurrence plots and identifies an optimal time delay embedding. We firstly apply the paradigm on well-known deterministic and stochastic systems including Duffing systems and multi-fractional Gaussian noise. We then apply the paradigm to optimize the sampling of empirical point process data from RideAustin, a company providing ride share service in the city of Austin, Texas, the USA, thus reconstructing a period-7 attractor. Results show that in deterministic systems, an optimal embedding exists under which recurrence plots exhibit robust diagonal or vertical lines. However, in stochastic systems, an optimal embedding often does not exist, evidenced by the inability to shrink the standard deviation of either the determinism or the trapping time. By means of surrogate testing, we also show that a Poisson process or a stochastic system with periodic trend is insufficient to model uncertainty contained in empirical data. By contrast, the period-7 attractor dominates and well models nonlinear dynamics of empirical data via irregularly switching of the slow and the fast dynamics. Findings highlight the importance of fitting and recreating nonlinear dynamics of data in modeling practical problems.