MbrlCatalogueTitleDetail

Do you wish to reserve the book?
A geometric framework for multiclass ensemble classifiers
A geometric framework for multiclass ensemble classifiers
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
A geometric framework for multiclass ensemble classifiers
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
A geometric framework for multiclass ensemble classifiers
A geometric framework for multiclass ensemble classifiers

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
A geometric framework for multiclass ensemble classifiers
A geometric framework for multiclass ensemble classifiers
Journal Article

A geometric framework for multiclass ensemble classifiers

2023
Request Book From Autostore and Choose the Collection Method
Overview
Ensemble classifiers have been investigated by many in the artificial intelligence and machine learning community. Majority voting and weighted majority voting are two commonly used combination schemes in ensemble learning. However, understanding of them is incomplete at best, with some properties even misunderstood. In this paper, we present a group of properties of these two schemes formally under a geometric framework. Two key factors, every component base classifier’s performance and dissimilarity between each pair of component classifiers are evaluated by the same metric—the Euclidean distance. Consequently, ensembling becomes a deterministic problem and the performance of an ensemble can be calculated directly by a formula. We prove several theorems of interest and explain their implications for ensembles. In particular, we compare and contrast the effect of the number of component classifiers on these two types of ensemble schemes. Some important properties of both combination schemes are discussed. And a method to calculate the optimal weights for the weighted majority voting is presented. Empirical investigation is conducted to verify the theoretical results. We believe that the results from this paper are very useful for us to understand the fundamental properties of these two combination schemes and the principles of ensemble classifiers in general. The results are also helpful for us to investigate some issues in ensemble classifiers, such as ensemble performance prediction, diversity, ensemble pruning, and others.