MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Rapid Integrated Design Verification of Vertical Take-Off and Landing UAVs Based on Modified Model-Based Systems Engineering
Rapid Integrated Design Verification of Vertical Take-Off and Landing UAVs Based on Modified Model-Based Systems Engineering
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Rapid Integrated Design Verification of Vertical Take-Off and Landing UAVs Based on Modified Model-Based Systems Engineering
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Rapid Integrated Design Verification of Vertical Take-Off and Landing UAVs Based on Modified Model-Based Systems Engineering
Rapid Integrated Design Verification of Vertical Take-Off and Landing UAVs Based on Modified Model-Based Systems Engineering

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Rapid Integrated Design Verification of Vertical Take-Off and Landing UAVs Based on Modified Model-Based Systems Engineering
Rapid Integrated Design Verification of Vertical Take-Off and Landing UAVs Based on Modified Model-Based Systems Engineering
Journal Article

Rapid Integrated Design Verification of Vertical Take-Off and Landing UAVs Based on Modified Model-Based Systems Engineering

2024
Request Book From Autostore and Choose the Collection Method
Overview
Unmanned Aerial Vehicle (UAV) development has garnered significant attention, yet one of the major challenges in the field is how to rapidly iterate the overall design scheme of UAVs to meet actual needs, thereby shortening development cycles and reducing costs. This study integrates a “Decision Support System” and “Live Virtual Construct (LVC) environment” into the existing Model-Based Systems Engineering framework, proposing a Modified Model-Based Systems Engineering methodology for the full-process development of UAVs. By constructing a decision support system and a hybrid reality space—which includes pure digital modeling and simulation analysis software, semi-physical simulation platforms, real flight environments, and virtual UAVs—we demonstrate this method through the development of the electric vertical take-off and landing fixed-wing UAV DB1. This method allows for rapid, on-demand iteration in a fully digital environment, with feasibility validated by comparing actual flight test results with mission indicators. The study results show that this approach significantly accelerates UAV development while reducing costs, achieving rapid development from “demand side to design side” under the “0 loss” background. The DB1 platform can carry a 2.5 kg payload, achieve over 40 min of flight time, and cover a range of more than 70 km. This work provides valuable references for UAV enterprises aiming to reduce costs and increase efficiency in the rapid commercialization of UAV applications.