MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Dna coding theory and algorithms
Dna coding theory and algorithms
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Dna coding theory and algorithms
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Dna coding theory and algorithms
Dna coding theory and algorithms

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Dna coding theory and algorithms
Dna coding theory and algorithms
Journal Article

Dna coding theory and algorithms

2025
Request Book From Autostore and Choose the Collection Method
Overview
DNA computing is an emerging computational model that has garnered significant attention due to its distinctive advantages at the molecular biological level. Since it was introduced by Adelman in 1994, this field has made remarkable progress in solving NP -complete problems, enhancing information security, encrypting images, controlling diseases, and advancing nanotechnology. A key challenge in DNA computing is the design of DNA coding, which aims to minimize nonspecific hybridization and enhance computational reliability. The DNA coding design is a classical combinatorial optimization problem focused on generating high-quality DNA sequences that meet specific constraints, including distance, thermodynamics, secondary structure, and sequence requirements. This paper comprehensively examines the advances in DNA coding design, highlighting mathematical models, counting theory, and commonly used DNA coding methods. These methods include the template method, multi-objective evolutionary methods, and implicit enumeration techniques.