MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Development of Machine Learning and Deep Learning Prediction Models for PM2.5 in Ho Chi Minh City, Vietnam
Development of Machine Learning and Deep Learning Prediction Models for PM2.5 in Ho Chi Minh City, Vietnam
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Development of Machine Learning and Deep Learning Prediction Models for PM2.5 in Ho Chi Minh City, Vietnam
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Development of Machine Learning and Deep Learning Prediction Models for PM2.5 in Ho Chi Minh City, Vietnam
Development of Machine Learning and Deep Learning Prediction Models for PM2.5 in Ho Chi Minh City, Vietnam

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Development of Machine Learning and Deep Learning Prediction Models for PM2.5 in Ho Chi Minh City, Vietnam
Development of Machine Learning and Deep Learning Prediction Models for PM2.5 in Ho Chi Minh City, Vietnam
Journal Article

Development of Machine Learning and Deep Learning Prediction Models for PM2.5 in Ho Chi Minh City, Vietnam

2024
Request Book From Autostore and Choose the Collection Method
Overview
The application of machine learning and deep learning in air pollution management is becoming increasingly crucial, as these technologies enhance the accuracy of pollution prediction models, facilitating timely interventions and policy adjustments. They also facilitate the analysis of large datasets to identify pollution sources and trends, ultimately contributing to more effective and targeted environmental protection strategies. Ho Chi Minh City (HCMC), a major metropolitan area in southern Vietnam, has experienced a significant rise in air pollution levels, particularly PM2.5, in recent years, creating substantial risks to both public health and the environment. Given the challenges posed by air quality issues, it is essential to develop robust methodologies for predicting PM2.5 concentrations in HCMC. This study seeks to develop and evaluate multiple machine learning and deep learning models for predicting PM2.5 concentrations in HCMC, Vietnam, utilizing PM2.5 and meteorological data over 911 days, from 1 January 2021 to 30 June 2023. Six algorithms were applied: random forest (RF), extreme gradient boosting (XGB), support vector regression (SVR), artificial neural network (ANN), generalized regression neural network (GRNN), and convolutional neural network (CNN). The results indicated that the ANN is the most effective algorithm for predicting PM2.5 concentrations, with an index of agreement (IOA) value of 0.736 and the lowest prediction errors during the testing phase. These findings imply that the ANN algorithm could serve as an effective tool for predicting PM2.5 concentrations in urban environments, particularly in HCMC. This study provides valuable insights into the factors that affect PM2.5 concentrations in HCMC and emphasizes the capacity of AI methodologies in reducing atmospheric pollution. Additionally, it offers valuable insights for policymakers and health officials to implement targeted interventions aimed at reducing air pollution and improving public health.