MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Crested two-dimensional transistors
Crested two-dimensional transistors
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Crested two-dimensional transistors
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Crested two-dimensional transistors
Crested two-dimensional transistors

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Crested two-dimensional transistors
Crested two-dimensional transistors
Journal Article

Crested two-dimensional transistors

2019
Request Book From Autostore and Choose the Collection Method
Overview
Two-dimensional transition metal dichalcogenide (TMD) materials, albeit promising candidates for applications in electronics and optoelectronics1–3, are still limited by their low electrical mobility under ambient conditions. Efforts to improve device performance through a variety of routes, such as modification of contact metals4 and gate dielectrics5–9 or encapsulation in hexagonal boron nitride10, have yielded limited success at room temperature. Here, we report a large increase in the performance of TMD field-effect transistors operating under ambient conditions, achieved by engineering the substrate’s surface morphology. For MoS2 transistors fabricated on crested substrates, we observed an almost two orders of magnitude increase in carrier mobility compared to standard devices, as well as very high saturation currents. The mechanical strain in TMDs has been predicted to boost carrier mobility11, and has been shown to influence the local bandgap12,13 and quantum emission properties14 of TMDs. With comprehensive investigation of different dielectric environments and morphologies, we demonstrate that the substrate’s increased corrugation, with its resulting strain field, is the dominant factor driving performance enhancement. This strategy is universally valid for other semiconducting TMD materials, either p-doped or n-doped, opening them up for applications in heterogeneous integrated electronics.A significant mobility increase in TMD-based field-effect transistors is achieved via engineering of nanometre-scale corrugations and crests in the dielectric substrate.