MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Betaine Alleviates Bisphosphonate-Related Osteonecrosis of the Jaw by Rescuing BMSCs Function in an m6A-METTL3-Dependent Manner
Betaine Alleviates Bisphosphonate-Related Osteonecrosis of the Jaw by Rescuing BMSCs Function in an m6A-METTL3-Dependent Manner
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Betaine Alleviates Bisphosphonate-Related Osteonecrosis of the Jaw by Rescuing BMSCs Function in an m6A-METTL3-Dependent Manner
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Betaine Alleviates Bisphosphonate-Related Osteonecrosis of the Jaw by Rescuing BMSCs Function in an m6A-METTL3-Dependent Manner
Betaine Alleviates Bisphosphonate-Related Osteonecrosis of the Jaw by Rescuing BMSCs Function in an m6A-METTL3-Dependent Manner

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Betaine Alleviates Bisphosphonate-Related Osteonecrosis of the Jaw by Rescuing BMSCs Function in an m6A-METTL3-Dependent Manner
Betaine Alleviates Bisphosphonate-Related Osteonecrosis of the Jaw by Rescuing BMSCs Function in an m6A-METTL3-Dependent Manner
Journal Article

Betaine Alleviates Bisphosphonate-Related Osteonecrosis of the Jaw by Rescuing BMSCs Function in an m6A-METTL3-Dependent Manner

2025
Request Book From Autostore and Choose the Collection Method
Overview
Bisphosphonate-related osteonecrosis of the jaw (BRONJ) is one of the side effects of bisphosphonate (BP) administration. Despite some preventive measures having been suggested, a definitive and effective treatment strategy for BRONJ remains to be established. Recent evidence has indicated that BPs dramatically impair the function of orofacial bone marrow stromal cells (BMSCs), which may contribute to the development of osteonecrosis. Thus, we hypothesized that recovery-impaired function of BMSCs at lesion sites could be beneficial in treating BRONJ. N6-methyladenosine (m6A) modification is the most common epigenetic modification and has been demonstrated to play a vital role in the modulation of BMSCs’ function. We detected the role of m6A modification in regulating the function of orofacial BMSCs under BP stimulation, and found that BPs led to a reduction in the global m6A methylation level, SAM level, and METTL3 expression in BMSCs during the osteogenic differentiation period. Meanwhile, betaine, a methyl group donor, effectively reversed the BP-decreased global m6A methylation level and SAM level in BMSCs, as well as rescuing the differentiation ability of impaired BMSCs. In the last part, we built a BRONJ rat model and supplemented rats with betaine via drinking water. The results showed that betaine successfully attenuated bone lesions and promoted wound healing in BP-injected rats, thereby providing new insight into future clinical treatment for BRONJ.