MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Acquired enamel pellicle and biofilm engineering with a combination of acid-resistant proteins (CaneCPI-5, StN15, and Hemoglobin) for enhanced protection against dental caries - in vivo and in vitro investigations
Acquired enamel pellicle and biofilm engineering with a combination of acid-resistant proteins (CaneCPI-5, StN15, and Hemoglobin) for enhanced protection against dental caries - in vivo and in vitro investigations
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Acquired enamel pellicle and biofilm engineering with a combination of acid-resistant proteins (CaneCPI-5, StN15, and Hemoglobin) for enhanced protection against dental caries - in vivo and in vitro investigations
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Acquired enamel pellicle and biofilm engineering with a combination of acid-resistant proteins (CaneCPI-5, StN15, and Hemoglobin) for enhanced protection against dental caries - in vivo and in vitro investigations
Acquired enamel pellicle and biofilm engineering with a combination of acid-resistant proteins (CaneCPI-5, StN15, and Hemoglobin) for enhanced protection against dental caries - in vivo and in vitro investigations

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Acquired enamel pellicle and biofilm engineering with a combination of acid-resistant proteins (CaneCPI-5, StN15, and Hemoglobin) for enhanced protection against dental caries - in vivo and in vitro investigations
Acquired enamel pellicle and biofilm engineering with a combination of acid-resistant proteins (CaneCPI-5, StN15, and Hemoglobin) for enhanced protection against dental caries - in vivo and in vitro investigations
Journal Article

Acquired enamel pellicle and biofilm engineering with a combination of acid-resistant proteins (CaneCPI-5, StN15, and Hemoglobin) for enhanced protection against dental caries - in vivo and in vitro investigations

2024
Request Book From Autostore and Choose the Collection Method
Overview
Objective This study was designed in two-legs. In the in vivo, we explored the potential of a rinse solution containing a combination (Comb) of 0.1 mg/mL CaneCPI-5 (sugarcane-derive cystatin), 1.88 × 10 − 5 M StN15 (statherin-derived peptide) and 1.0 mg/mL hemoglobin (Hb) to change the protein profile of the acquired enamel pellicle(AEP) and the microbiome of the enamel biofilm. The in vitro, was designed to reveal the effects of Comb on the viability and bacterial composition of the microcosm biofilm, as well as on enamel demineralization. Materials and methods I n vivo study, 10 participants rinsed (10mL,1 min) with either deionized water (H 2 O-control) or Comb. AEP and biofilm were collected after 2 and 3 h, respectively, after rinsing. AEP samples underwent proteomics analysis, while biofilm microbiome was assessed via 16 S-rRNA Next Generation Sequencing(NGS). I n vitro study, a microcosm biofilm protocol was employed. Ninety-six enamel specimens were treated with: 1)Phosphate-Buffered Solution-PBS(negative-control), 2)0.12%Chlorhexidine, 3)500ppmNaF and 4)Comb. Resazurin, colony-forming-units(CFU) and Transversal Microradiography(TMR) were performed. Results The proteomic results revealed higher quantity of proteins in the Comb compared to control associated with immune system response and oral microbial adhesion. Microbiome showed a significant increase in bacteria linked to a healthy microbiota, in the Comb group. In the in vitro study, Comb group was only efficient in reducing mineral-loss and lesion-depth compared to the PBS. Conclusions The AEP modification altered the subsequent layers, affecting the initial process of bacterial adhesion of pathogenic and commensal bacteria, as well as enamel demineralization. Clinical relevance Comb group shows promise in shaping oral health by potentially introducing innovative approaches to prevent enamel demineralization and deter tooth decay.

MBRLCatalogueRelatedBooks