MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Utilization of Hydrolyzed Agro-Industrial Waste from Arti-Chokes to Obtain Structurally Functional Bacterial Cellulose by Komagataeibacter rhaeticus QK23
Utilization of Hydrolyzed Agro-Industrial Waste from Arti-Chokes to Obtain Structurally Functional Bacterial Cellulose by Komagataeibacter rhaeticus QK23
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Utilization of Hydrolyzed Agro-Industrial Waste from Arti-Chokes to Obtain Structurally Functional Bacterial Cellulose by Komagataeibacter rhaeticus QK23
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Utilization of Hydrolyzed Agro-Industrial Waste from Arti-Chokes to Obtain Structurally Functional Bacterial Cellulose by Komagataeibacter rhaeticus QK23
Utilization of Hydrolyzed Agro-Industrial Waste from Arti-Chokes to Obtain Structurally Functional Bacterial Cellulose by Komagataeibacter rhaeticus QK23

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Utilization of Hydrolyzed Agro-Industrial Waste from Arti-Chokes to Obtain Structurally Functional Bacterial Cellulose by Komagataeibacter rhaeticus QK23
Utilization of Hydrolyzed Agro-Industrial Waste from Arti-Chokes to Obtain Structurally Functional Bacterial Cellulose by Komagataeibacter rhaeticus QK23
Journal Article

Utilization of Hydrolyzed Agro-Industrial Waste from Arti-Chokes to Obtain Structurally Functional Bacterial Cellulose by Komagataeibacter rhaeticus QK23

2025
Request Book From Autostore and Choose the Collection Method
Overview
Bacterial cellulose (BC) is a pure, crystalline biopolymer with broad applications, though large-scale production remains limited by the high cost of culture media. This study evaluated the use of artichoke bract waste as an alternative substrate for BC production by Komagataeibacter rhaeticus QK23, focusing on culture optimization and physicochemical characterization of the resulting biopolymer. Infrared spectroscopy revealed functional groups characteristic of cellulose, hemicellulose, lignin, and inulin, along with structural sugars (glucose 24%, xylose 5.07%, arabinose 4.96%, galactose 8.81%, and mannose 1.75%). After hydrolysis with H2SO4, up to 11.81 g/L of reducing sugars were released and incorporated into Hestrin–Schramm medium lacking glucose. Using a central composite design, inoculum dose (10–20%) and incubation time (7–14 days) were optimized under static conditions at 30 °C. The highest yield (1.57 g/L) was obtained with 20% inoculum after 14 days. The product corresponded to type I cellulose with a crystallinity index of 81.87%, and AFM analysis revealed a surface roughness of 32.96 nm. The results demonstrate that artichoke hydrolysates are a viable and sustainable source for BC production, promoting agricultural waste valorization and cost reduction in industrial biotechnology.