MbrlCatalogueTitleDetail

Do you wish to reserve the book?
A radial basis function-based multi-fidelity surrogate model: exploring correlation between high-fidelity and low-fidelity models
A radial basis function-based multi-fidelity surrogate model: exploring correlation between high-fidelity and low-fidelity models
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
A radial basis function-based multi-fidelity surrogate model: exploring correlation between high-fidelity and low-fidelity models
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
A radial basis function-based multi-fidelity surrogate model: exploring correlation between high-fidelity and low-fidelity models
A radial basis function-based multi-fidelity surrogate model: exploring correlation between high-fidelity and low-fidelity models

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
A radial basis function-based multi-fidelity surrogate model: exploring correlation between high-fidelity and low-fidelity models
A radial basis function-based multi-fidelity surrogate model: exploring correlation between high-fidelity and low-fidelity models
Journal Article

A radial basis function-based multi-fidelity surrogate model: exploring correlation between high-fidelity and low-fidelity models

2019
Request Book From Autostore and Choose the Collection Method
Overview
In computational simulation, a high-fidelity (HF) model is generally more accurate than a low-fidelity (LF) model, while the latter is generally more computationally efficient than the former. To take advantages of both HF and LF models, a multi-fidelity surrogate model based on radial basis function (MFS-RBF) is developed in this paper by combining HF and LF models. To determine the scaling factor between HF and LF models, a correlation matrix is augmented by further integrating LF responses. The scaling factor and relevant basis function weights are then calculated by employing corresponding HF responses. MFS-RBF is compared with Co-Kriging model, multi-fidelity surrogate based on linear regression (LR-MFS) model, CoRBF model, and three single-fidelity surrogates. The impact of key factors, such as the cost ratio of LF to HF models and different combinations of HF and LF samples, is also investigated. The results show that (i) MFS-RBF presents a better accuracy and robustness than the three benchmark MFS models and single-fidelity surrogates in about 90% cases of this paper; (ii) MFS-RBF is less sensitive to the correlation between HF and LF models than the three MFS models; (iii) by fixing the total computational cost, the cost ratio of LF to HF models is suggested to be less than 0.2, and 10–80% of the total cost should be used for LF samples; (iv) the MFS-RBF model is able to save an average of 50 to 70% computational cost if HF and LF models are highly correlated.