MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Cushion plant morphology controls biogenic capability and facilitation effects of Silene acaulis along an elevation gradient
Cushion plant morphology controls biogenic capability and facilitation effects of Silene acaulis along an elevation gradient
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Cushion plant morphology controls biogenic capability and facilitation effects of Silene acaulis along an elevation gradient
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Cushion plant morphology controls biogenic capability and facilitation effects of Silene acaulis along an elevation gradient
Cushion plant morphology controls biogenic capability and facilitation effects of Silene acaulis along an elevation gradient

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Cushion plant morphology controls biogenic capability and facilitation effects of Silene acaulis along an elevation gradient
Cushion plant morphology controls biogenic capability and facilitation effects of Silene acaulis along an elevation gradient
Journal Article

Cushion plant morphology controls biogenic capability and facilitation effects of Silene acaulis along an elevation gradient

2016
Request Book From Autostore and Choose the Collection Method
Overview
Summary The stress‐gradient hypothesis (SGH) predicts that the balance of plant–plant interactions shifts along abiotic environmental gradients, with facilitation becoming more frequent under stressful conditions. However, recent studies have challenged this perspective, reporting that positive interactions are, in some cases, more common at the intermediate level of environmental severity gradients. Here, we test whether and how neighbour effects by Silene acaulis cushions vary along a 700 m wide altitudinal transect, in relation to cushion morphological traits and environmental severity. Field measurements along the gradient, within and outside cushions, included (i) species richness and cover of coexisting vascular plants; (ii) cushion morphology; (iii) above‐ and below‐ground microclimate; and (iv) soil quality. We used the relative interaction index to decouple neighbour trait effects and environmental severity effects on plant diversity at different elevations. The ability of the cushion plant to facilitate heterospecifics shifts considerably along the elevation gradient, being greatest at the intermediate level. On the other hand, Silene morphological traits steadily change along the gradient, from lax, soft and flat‐shaped cushion habits at low elevation to tightly knit and dome‐shaped habits at high elevation. Cushion morphological changes are associated with mitigating effects on microclimate, indicating that cushions effectively act as a heat‐trap at medium and high elevations, while at low elevations the soft and flat cushions avoid excessive heat accumulation by tight coupling with the surrounding atmosphere. At the upper end of the gradient, cushion cespitose–pulvinate compactness and high stem density appear to be critical traits in modulating the net effect of plant–plant interaction, since the space available for hosting other vascular species is considerably reduced. In conclusion, this work provides a mechanistic link between plant morphological traits, associated biogenic microclimate changes and variation in net plant–plant interactions along the explored severity gradient. Our findings support an alternative conceptual model to SGH, with plant facilitation collapsing at the upper extreme of the abiotic stress gradient. Lay Summary