MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Semantic Segmentation Deep Learning for Extracting Surface Mine Extents from Historic Topographic Maps
Semantic Segmentation Deep Learning for Extracting Surface Mine Extents from Historic Topographic Maps
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Semantic Segmentation Deep Learning for Extracting Surface Mine Extents from Historic Topographic Maps
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Semantic Segmentation Deep Learning for Extracting Surface Mine Extents from Historic Topographic Maps
Semantic Segmentation Deep Learning for Extracting Surface Mine Extents from Historic Topographic Maps

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Semantic Segmentation Deep Learning for Extracting Surface Mine Extents from Historic Topographic Maps
Semantic Segmentation Deep Learning for Extracting Surface Mine Extents from Historic Topographic Maps
Journal Article

Semantic Segmentation Deep Learning for Extracting Surface Mine Extents from Historic Topographic Maps

2020
Request Book From Autostore and Choose the Collection Method
Overview
Historic topographic maps, which are georeferenced and made publicly available by the United States Geological Survey (USGS) and the National Map’s Historical Topographic Map Collection (HTMC), are a valuable source of historic land cover and land use (LCLU) information that could be used to expand the historic record when combined with data from moderate spatial resolution Earth observation missions. This is especially true for landscape disturbances that have a long and complex historic record, such as surface coal mining in the Appalachian region of the eastern United States. In this study, we investigate this specific mapping problem using modified UNet semantic segmentation deep learning (DL), which is based on convolutional neural networks (CNNs), and a large example dataset of historic surface mine disturbance extents from the USGS Geology, Geophysics, and Geochemistry Science Center (GGGSC). The primary objectives of this study are to (1) evaluate model generalization to new geographic extents and topographic maps and (2) to assess the impact of training sample size, or the number of manually interpreted topographic maps, on model performance. Using data from the state of Kentucky, our findings suggest that DL semantic segmentation can detect surface mine disturbance features from topographic maps with a high level of accuracy (Dice coefficient = 0.902) and relatively balanced omission and commission error rates (Precision = 0.891, Recall = 0.917). When the model is applied to new topographic maps in Ohio and Virginia to assess generalization, model performance decreases; however, performance is still strong (Ohio Dice coefficient = 0.837 and Virginia Dice coefficient = 0.763). Further, when reducing the number of topographic maps used to derive training image chips from 84 to 15, model performance was only slightly reduced, suggesting that models that generalize well to new data and geographic extents may not require a large training set. We suggest the incorporation of DL semantic segmentation methods into applied workflows to decrease manual digitizing labor requirements and call for additional research associated with applying semantic segmentation methods to alternative cartographic representations to supplement research focused on multispectral image analysis and classification.