MbrlCatalogueTitleDetail

Do you wish to reserve the book?
A method of linking functional and structural connectivity analysis in urban green infrastructure network construction
A method of linking functional and structural connectivity analysis in urban green infrastructure network construction
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
A method of linking functional and structural connectivity analysis in urban green infrastructure network construction
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
A method of linking functional and structural connectivity analysis in urban green infrastructure network construction
A method of linking functional and structural connectivity analysis in urban green infrastructure network construction

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
A method of linking functional and structural connectivity analysis in urban green infrastructure network construction
A method of linking functional and structural connectivity analysis in urban green infrastructure network construction
Journal Article

A method of linking functional and structural connectivity analysis in urban green infrastructure network construction

2022
Request Book From Autostore and Choose the Collection Method
Overview
Accelerated urbanization and population growth lead to the fragmentation of urban green space and loss of biodiversity. There are few studies on the integration of structural and functional connectivity to solve this problem. Our study aims to draw up a methodology to synthesize two methods of connectivity evaluation, accordingly, to construct an urban green infrastructure (UGI) network which is of great significance to maintain the stability of the urban ecosystem. Taking Beijing as a study area, we first used Morphological Spatial Pattern Analysis (MSPA) to identify the source patches, then combined with the graph theory-based landscape metrics to discuss the effect of different diffusion distances on the regional landscape connectivity and classify the importance level of the source patches. Finally, we used both least-cost path (LCP) and circuit theory to construct network and identify pinch areas in corridors for network optimization. The results show that (1) the landscape connectivity of the study area is obviously polarized. Source patches in mountain and hilly areas have good ecological bases and large areas, and the density of corridors is relatively high, which makes a large contribution to the overall landscape connectivity; Source patches in plain areas are severely fragmented, and there are only a small number of potential corridors connecting urban areas and suburban areas. (2) The UGI network is composed of 70 source patches and 148 potential corridors. The diffusion distance that is most beneficial to improve landscape connectivity is 20–25 km. (3) 6 pinch areas that are of great significance for improving the connectivity of the landscape present the coexistence of high migration resistance and large optimization potential, and urgently need to be restored first. This study provides a method to combine the structural and the functional analysis to construct a UGI network and formulate more scientifical protection strategies for planning departments.