MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Power System Transient Stability Preventive Control via Aptenodytes Forsteri Optimization with an Improved Transient Stability Assessment Model
Power System Transient Stability Preventive Control via Aptenodytes Forsteri Optimization with an Improved Transient Stability Assessment Model
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Power System Transient Stability Preventive Control via Aptenodytes Forsteri Optimization with an Improved Transient Stability Assessment Model
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Power System Transient Stability Preventive Control via Aptenodytes Forsteri Optimization with an Improved Transient Stability Assessment Model
Power System Transient Stability Preventive Control via Aptenodytes Forsteri Optimization with an Improved Transient Stability Assessment Model

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Power System Transient Stability Preventive Control via Aptenodytes Forsteri Optimization with an Improved Transient Stability Assessment Model
Power System Transient Stability Preventive Control via Aptenodytes Forsteri Optimization with an Improved Transient Stability Assessment Model
Journal Article

Power System Transient Stability Preventive Control via Aptenodytes Forsteri Optimization with an Improved Transient Stability Assessment Model

2024
Request Book From Autostore and Choose the Collection Method
Overview
Transient stability preventive control (TSPC), a method to efficiently withstand the severe contingencies in a power system, is mathematically a transient stability constrained optimal power flow (TSC-OPF) issue, attempting to maintain the economical and secure dispatch of a power system via generation rescheduling. The traditional TSC-OPF issue incorporated with differential-algebraic equations (DAE) is time consumption and difficult to solve. Therefore, this paper proposes a new TSPC method driven by a naturally inspired optimization algorithm integrated with transient stability assessment. To avoid solving complex DAE, the stacking ensemble multilayer perceptron (SEMLP) is used in this research as a transient stability assessment (TSA) model and integrated into the optimization algorithm to replace transient stability constraints. Therefore, less time is spent on challenging calculations. Simultaneously, sensitivity analysis (SA) based on this TSA model determines the adjustment direction of the controllable generators set. The results of this SA can be utilized as prior knowledge for subsequent optimization algorithms, thus further reducing the time consumption process. In addition, a naturally inspired algorithm, Aptenodytes Forsteri Optimization (AFO), is introduced to find the best operating point with a near-optimal operational cost while ensuring power system stability. The accuracy and effectiveness of the method are verified on the IEEE 39-bus system and the IEEE 300-bus system. After the implementation of the proposed TSPC method, both systems can ensure transient stability under a given contingency. The test experiment using AFO driven by SEMLP and SA on the IEEE 39-bus system is completed in about 35 s, which is one-tenth of the time required by the time domain simulation method.