MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Influence of Black Carbon on Measurement Errors in Scattering-Based Visibility Meters
Influence of Black Carbon on Measurement Errors in Scattering-Based Visibility Meters
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Influence of Black Carbon on Measurement Errors in Scattering-Based Visibility Meters
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Influence of Black Carbon on Measurement Errors in Scattering-Based Visibility Meters
Influence of Black Carbon on Measurement Errors in Scattering-Based Visibility Meters

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Influence of Black Carbon on Measurement Errors in Scattering-Based Visibility Meters
Influence of Black Carbon on Measurement Errors in Scattering-Based Visibility Meters
Journal Article

Influence of Black Carbon on Measurement Errors in Scattering-Based Visibility Meters

2025
Request Book From Autostore and Choose the Collection Method
Overview
Visibility is a fundamental meteorological parameter critical for surface transportation, aviation, maritime navigation, and weather process investigation. Scattering visibility meters are extensively utilised for their simple design and rapid response; however, their measurement principle is inherently limited, as they only quantify the scattering coefficient without assessing the absorption coefficient, potentially causing measurement errors. The World Meteorological Organisation (WMO) posits that the atmospheric absorption coefficient is usually relatively small and can be neglected, justifying the approximation of the extinction coefficient by the scattering coefficient. However, as black carbon is the predominant light-absorbing component in the atmosphere, an increase in its mass concentration markedly alters the atmospheric absorption coefficient, considerably impacting the accuracy of scattering-based visibility meters. Based on Mie scattering theory and incorporating both field observations and laboratory data, we systematically examined the effects of black carbon and its interactions with other aerosol components on the measurement errors of scattering visibility meters. Our findings revealed that the impact of black carbon on measurement errors is substantial, and under certain conditions, particularly pronounced. This influence is not only dependent on the mass concentration of black carbon but also closely associated with aerosol size distribution, mixing state, and the characteristics of other scattering aerosols. Due to the spatiotemporal variability of these factors, the impact of black carbon on visibility errors is uncertain. Therefore, during the calibration of scattering-based visibility meters, the effects of black carbon and its associated factors must be considered to enhance measurement accuracy. We propose calibration recommendations for scattering-based visibility meters aimed at reducing measurement errors and improving the accuracy of visibility assessments.