MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Red-billed blue magpie optimizer: a novel metaheuristic algorithm for 2D/3D UAV path planning and engineering design problems
Red-billed blue magpie optimizer: a novel metaheuristic algorithm for 2D/3D UAV path planning and engineering design problems
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Red-billed blue magpie optimizer: a novel metaheuristic algorithm for 2D/3D UAV path planning and engineering design problems
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Red-billed blue magpie optimizer: a novel metaheuristic algorithm for 2D/3D UAV path planning and engineering design problems
Red-billed blue magpie optimizer: a novel metaheuristic algorithm for 2D/3D UAV path planning and engineering design problems

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Red-billed blue magpie optimizer: a novel metaheuristic algorithm for 2D/3D UAV path planning and engineering design problems
Red-billed blue magpie optimizer: a novel metaheuristic algorithm for 2D/3D UAV path planning and engineering design problems
Journal Article

Red-billed blue magpie optimizer: a novel metaheuristic algorithm for 2D/3D UAV path planning and engineering design problems

2024
Request Book From Autostore and Choose the Collection Method
Overview
Numerical optimization, Unmanned Aerial Vehicle (UAV) path planning, and engineering design problems are fundamental to the development of artificial intelligence. Traditional methods show limitations in dealing with these complex nonlinear models. To address these challenges, the swarm intelligence algorithm is introduced as a metaheuristic method and effectively implemented. However, existing technology exhibits drawbacks such as slow convergence speed, low precision, and poor robustness. In this paper, we propose a novel metaheuristic approach called the Red-billed Blue Magpie Optimizer (RBMO), inspired by the cooperative and efficient predation behaviors of red-billed blue magpies. The mathematical model of RBMO was established by simulating the searching, chasing, attacking prey, and food storage behaviors of the red-billed blue magpie. To demonstrate RBMO’s performance, we first conduct qualitative analyses through convergence behavior experiments. Next, RBMO’s numerical optimization capabilities are substantiated using CEC2014 (Dim = 10, 30, 50, and 100) and CEC2017 (Dim = 10, 30, 50, and 100) suites, consistently achieving the best Friedman mean rank. In UAV path planning applications (two-dimensional and three − dimensional), RBMO obtains preferable solutions, demonstrating its effectiveness in solving NP-hard problems. Additionally, in five engineering design problems, RBMO consistently yields the minimum cost, showcasing its advantage in practical problem-solving. We compare our experimental results with three categories of widely recognized algorithms: (1) advanced variants, (2) recently proposed algorithms, and (3) high-performance optimizers, including CEC winners.