MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Seed moisture content as a primary trait regulating the lethal temperature thresholds of seeds
Seed moisture content as a primary trait regulating the lethal temperature thresholds of seeds
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Seed moisture content as a primary trait regulating the lethal temperature thresholds of seeds
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Seed moisture content as a primary trait regulating the lethal temperature thresholds of seeds
Seed moisture content as a primary trait regulating the lethal temperature thresholds of seeds

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Seed moisture content as a primary trait regulating the lethal temperature thresholds of seeds
Seed moisture content as a primary trait regulating the lethal temperature thresholds of seeds
Journal Article

Seed moisture content as a primary trait regulating the lethal temperature thresholds of seeds

2019
Request Book From Autostore and Choose the Collection Method
Overview
1. Fire has long shaped biological responses of plants and plant communities in many ecosystems; yet, uncontrolled wildfire frequently puts people and infrastructure at risk. Fuel or hazard reduction burning outside of the historic fire season is a common and widespread practice aimed at reducing the risk of high-severity fires, which ideally also considers biodiversity values. Within fire-prone systems, seed banks are critical for plant species' regeneration, and seeds are typically adapted to survive the passage of fire and to regenerate in response to cues associated with historic fire regimes. However, species-specific tolerances to the heat from fire exist; likely influenced by a range of physical, physiological, and morphological seed traits, which may differ between seasons. The identification of these tolerances and associated seed traits may inform fire and species management. 2. We determined the lethal temperatures for seeds in relation to their moisture content, and other key traits that we hypothesised may be associated with survival. Seeds from 14 native species and 4 species non-native to fire-prone Mediterranean climate Banksia woodlands of south-west Western Australia were exposed to temperatures between 50 and 180°C for 3 min at three different moisture contents. The temperature at which half the seeds were killed (T50) was estimated using nonlinear modelling. Seed mass, seed shape, embryo type, plant resprouting ability, seed storage syndrome, and native/non-native status were quantified and modelled for their relationship with T50. 3. Increased moisture content was a significant predictor of elevated seed mortality. Seeds with higher moisture (95% relative humidity [RH]) content perished at much lower temperatures. Seeds with low moisture content (15% or 50% RH) were able to survive significantly higher temperatures (median increase of 38 and 31°C higher respectively). Seeds with basal embryos showed significantly lower T⁵⁰ than other embryo types. 4. Synthesis. Seeds with elevated moisture contents have lower lethal temperature thresholds, leading to increased seed mortality during fire events when seeds (and soils) are moist. Thermal tolerance varied among coexisting species within this fire-prone system. These data suggest potential concern for the impacts of aseasonal burning practices (i.e., cool/wet season burning), and highlight the importance of taking seed moisture content into account when planning and implementing prescribed burning.

MBRLCatalogueRelatedBooks