Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
A condition metric for Eucalyptus woodland derived from expert evaluations
by
White, Matthew D.
, Bruce, Matthew J.
, Griffioen, Peter
, Sinclair, Steve J.
, Dodd, Amanda
in
bosque yerboso de eucalipto
/ CLUS
/ conservation areas
/ Construction
/ Data
/ data collection
/ Ecosystem management
/ Ecosystems
/ Eucalyptus
/ Eucalyptus camaldulensi
/ Eucalyptus camaldulensis
/ Evaluation
/ expert elicitation
/ expert system
/ Experts
/ Forbs
/ grassy eucalypt woodland
/ humans
/ Land management
/ Land use
/ Land use management
/ Land use planning
/ managers
/ Mathematical models
/ Multidimensional scaling
/ planning
/ prediction
/ Quality
/ Quality assessment
/ Quantitative analysis
/ Regression analysis
/ regression tree
/ resultados de expertos
/ Scaling
/ Shrubs
/ sistema de expertos
/ Terrestrial ecosystems
/ Woodlands
/ árbol de regresión
2018
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
A condition metric for Eucalyptus woodland derived from expert evaluations
by
White, Matthew D.
, Bruce, Matthew J.
, Griffioen, Peter
, Sinclair, Steve J.
, Dodd, Amanda
in
bosque yerboso de eucalipto
/ CLUS
/ conservation areas
/ Construction
/ Data
/ data collection
/ Ecosystem management
/ Ecosystems
/ Eucalyptus
/ Eucalyptus camaldulensi
/ Eucalyptus camaldulensis
/ Evaluation
/ expert elicitation
/ expert system
/ Experts
/ Forbs
/ grassy eucalypt woodland
/ humans
/ Land management
/ Land use
/ Land use management
/ Land use planning
/ managers
/ Mathematical models
/ Multidimensional scaling
/ planning
/ prediction
/ Quality
/ Quality assessment
/ Quantitative analysis
/ Regression analysis
/ regression tree
/ resultados de expertos
/ Scaling
/ Shrubs
/ sistema de expertos
/ Terrestrial ecosystems
/ Woodlands
/ árbol de regresión
2018
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
A condition metric for Eucalyptus woodland derived from expert evaluations
by
White, Matthew D.
, Bruce, Matthew J.
, Griffioen, Peter
, Sinclair, Steve J.
, Dodd, Amanda
in
bosque yerboso de eucalipto
/ CLUS
/ conservation areas
/ Construction
/ Data
/ data collection
/ Ecosystem management
/ Ecosystems
/ Eucalyptus
/ Eucalyptus camaldulensi
/ Eucalyptus camaldulensis
/ Evaluation
/ expert elicitation
/ expert system
/ Experts
/ Forbs
/ grassy eucalypt woodland
/ humans
/ Land management
/ Land use
/ Land use management
/ Land use planning
/ managers
/ Mathematical models
/ Multidimensional scaling
/ planning
/ prediction
/ Quality
/ Quality assessment
/ Quantitative analysis
/ Regression analysis
/ regression tree
/ resultados de expertos
/ Scaling
/ Shrubs
/ sistema de expertos
/ Terrestrial ecosystems
/ Woodlands
/ árbol de regresión
2018
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
A condition metric for Eucalyptus woodland derived from expert evaluations
Journal Article
A condition metric for Eucalyptus woodland derived from expert evaluations
2018
Request Book From Autostore
and Choose the Collection Method
Overview
The evaluation of ecosystem quality is important for land-management and land-use planning. Evaluation is unavoidably subjective, and robust metrics must be based on consensus and the structured use of observations. We devised a transparent and repeatable process for building and testing ecosystem metrics based on expert data. We gathered quantitative evaluation data on the quality of hypothetical grassy woodland sites from experts. We used these data to train a model (an ensemble of 30 bagged regression trees) capable of predicting the perceived quality of similar hypothetical woodlands based on a set of 13 site variables as inputs (e.g., cover of shrubs, richness of native forbs). These variables can be measured at any site and the model implemented in a spreadsheet as a metric of woodland quality. We also investigated the number of experts required to produce an opinion data set sufficient for the construction of a metric. The model produced evaluations similar to those provided by experts, as shown by assessing the model's quality scores of expertevaluated test sites not used to train the model. We applied the metric to 13 woodland conservation reserves and asked managers of these sites to independently evaluate their quality. To assess metric performance, we compared the model's evaluation of site quality with the managers' evaluations through multidimensional scaling. The metric performed relatively well, plotting close to the center of the space defined by the evaluators. Given the method provides data-driven consensus and repeatability, which no single human evaluator can provide, we suggest it is a valuable tool for evaluating ecosystem quality in real-world contexts. We believe our approach is applicable to any ecosystem. La evaluación de la calidad de un ecosistema es importante para el manejo y la planeación del uso de suelo. Es inevitable que la evaluación sea subjetiva, y las medidas generalizadas deben basarse en consensos y el uso estructurado de las observaciones. Diseñamos un proceso transparente y repetible para construir y evaluar las medidas de un ecosistema con base en datos de expertos. A partir de los expertos, recolectamos datos sobre la evaluación cuantitativa de la calidad de sitios hipotéticos de bosques yerbosos. Utilizamos estos datos para entrenar a un modelo (un conjunto de 30 árboles de regresión embolsados) capaz de predecir la calidad percibida de bosques yerbosos hipotéticos similares con base en un juego de trece variables de sitio como aportación (p. ej.: cobertura de arbustos, riqueza de plantas herbáceas nativas). Estas variables pueden medirse en cualquier sitio y el modelo puede implementarse en una hoja de cálculo como medida de la calidad del bosque. También investigamos el número de expertos requerido para producir un conjunto de datos de opinión suficiente para la construcción de una medida. El modelo produjo evaluaciones similares a aquellas proporcionadas por los expertos, como se muestra al evaluar los puntajes de calidad del modelo de los sitios de prueba evaluados por expertos que no se utilizaron para entrenar al modelo. Aplicamos la medida a trece reservas de conservación de bosques y les pedimos a los administradores de estos sitios que evaluaran independientemente su calidad. Para evaluar el desempeño de la medida, tomparamos la evaluación del modelo de la calidad del sitio con las evaluaciones de los administradores por medio de un balanceo multidimensional. La medida tuvo un desempeño relativamente bueno, trazando cerca del centro del espacio definido por los evaluadores. Ya que el método proporciona un consenso impulsado por datos y es repetible, lo que ningún evaluador humano puede proporcionar, sugerimos que es una herramienta valiosa para la evaluación de la calidad de un ecosistema en contextos del mundo real. Consideramos que nuestra estrategia es aplicable a otros ecosistemas.
This website uses cookies to ensure you get the best experience on our website.