MbrlCatalogueTitleDetail

Do you wish to reserve the book?
From Inflammation to Cutaneous Repair: Topical Application of Lupeol Improves Skin Wound Healing in Rats by Modulating the Cytokine Levels, NF-κB, Ki-67, Growth Factor Expression, and Distribution of Collagen Fibers
From Inflammation to Cutaneous Repair: Topical Application of Lupeol Improves Skin Wound Healing in Rats by Modulating the Cytokine Levels, NF-κB, Ki-67, Growth Factor Expression, and Distribution of Collagen Fibers
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
From Inflammation to Cutaneous Repair: Topical Application of Lupeol Improves Skin Wound Healing in Rats by Modulating the Cytokine Levels, NF-κB, Ki-67, Growth Factor Expression, and Distribution of Collagen Fibers
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
From Inflammation to Cutaneous Repair: Topical Application of Lupeol Improves Skin Wound Healing in Rats by Modulating the Cytokine Levels, NF-κB, Ki-67, Growth Factor Expression, and Distribution of Collagen Fibers
From Inflammation to Cutaneous Repair: Topical Application of Lupeol Improves Skin Wound Healing in Rats by Modulating the Cytokine Levels, NF-κB, Ki-67, Growth Factor Expression, and Distribution of Collagen Fibers

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
From Inflammation to Cutaneous Repair: Topical Application of Lupeol Improves Skin Wound Healing in Rats by Modulating the Cytokine Levels, NF-κB, Ki-67, Growth Factor Expression, and Distribution of Collagen Fibers
From Inflammation to Cutaneous Repair: Topical Application of Lupeol Improves Skin Wound Healing in Rats by Modulating the Cytokine Levels, NF-κB, Ki-67, Growth Factor Expression, and Distribution of Collagen Fibers
Journal Article

From Inflammation to Cutaneous Repair: Topical Application of Lupeol Improves Skin Wound Healing in Rats by Modulating the Cytokine Levels, NF-κB, Ki-67, Growth Factor Expression, and Distribution of Collagen Fibers

2020
Request Book From Autostore and Choose the Collection Method
Overview
Skin wound healing is a highly complex event that involves different mediators at the cellular and molecular level. Lupeol has been reported to possess different biological activities, such as anti-inflammatory, antioxidant, antidiabetic, and in vitro wound healing properties, which motivated us to proceed with in vivo studies. We aimed to investigate the wound healing effect of lupeol-based cream for 3, 7, and 14 days. Wound excisions were induced on the thoraco-lumbar region of rats and topically treated immediately after injury induction. Macroscopic, histopathological, and immunohistochemical analyses were performed. Cytokine levels were measured by ELISA and gene expression was evaluated by real-time RT-qPCR. Our results showed a strong wound-healing effect of lupeol-based cream after 7 and 14 days. Lupeol treatment caused a reduction in proinflammatory cytokines (TNF-a, IL-1β, and IL-6) and gene and protein NF-κB expression, and positively altered IL-10 levels, showing anti-inflammatory effects in the three treatment periods. Lupeol treatment showed involvement in the proliferative phase by stimulating the formation of new blood vessels, increasing the immunostaining of Ki-67 and gene expression, and immunolabeling of vascular endothelial growth factor (VEGF) and epidermal growth factor (EGF), and increasing gene expression of transforming growth factor beta-1 (TGF-β1) after seven days of treatment. Lupeol was also involved in the tissue regeneration phase by increasing the synthesis of collagen fibers noted in the three treatment periods analyzed. Our findings suggest that lupeol may serve as a novel therapeutic option to treat cutaneous wounds by regulating mechanisms involved in the inflammatory, proliferative, and tissue-remodeling phases.