MbrlCatalogueTitleDetail

Do you wish to reserve the book?
A Calculation Method of Passenger Flow Distribution in Large-Scale Subway Network Based on Passenger–Train Matching Probability
A Calculation Method of Passenger Flow Distribution in Large-Scale Subway Network Based on Passenger–Train Matching Probability
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
A Calculation Method of Passenger Flow Distribution in Large-Scale Subway Network Based on Passenger–Train Matching Probability
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
A Calculation Method of Passenger Flow Distribution in Large-Scale Subway Network Based on Passenger–Train Matching Probability
A Calculation Method of Passenger Flow Distribution in Large-Scale Subway Network Based on Passenger–Train Matching Probability

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
A Calculation Method of Passenger Flow Distribution in Large-Scale Subway Network Based on Passenger–Train Matching Probability
A Calculation Method of Passenger Flow Distribution in Large-Scale Subway Network Based on Passenger–Train Matching Probability
Journal Article

A Calculation Method of Passenger Flow Distribution in Large-Scale Subway Network Based on Passenger–Train Matching Probability

2022
Request Book From Autostore and Choose the Collection Method
Overview
The ever-increasing travel demand has brought great challenges to the organization, operation, and management of the subway system. An accurate estimation of passenger flow distribution can help subway operators design corresponding operation plans and strategies scientifically. Although some literature has studied the problem of passenger flow distribution by analyzing the passengers’ path choice behaviors based on AFC (automated fare collection) data, few studies focus on the passenger flow distribution while considering the passenger–train matching probability, which is the key problem of passenger flow distribution. Specifically, the existing methods have not been applied to practical large-scale subway networks due to the computational complexity. To fill this research gap, this paper analyzes the relationship between passenger travel behavior and train operation in the space and time dimension and formulates the passenger–train matching probability by using multi-source data including AFC, train timetables, and network topology. Then, a reverse derivation method, which can reduce the scale of possible train combinations for passengers, is proposed to improve the computational efficiency. Simultaneously, an estimation method of passenger flow distribution is presented based on the passenger–train matching probability. Finally, two sets of experiments, including an accuracy verification experiment based on synthetic data and a comparison experiment based on real data from the Beijing subway, are conducted to verify the effectiveness of the proposed method. The calculation results show that the proposed method has a good accuracy and computational efficiency for a large-scale subway network.