MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Variable metric random pursuit
Variable metric random pursuit
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Variable metric random pursuit
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Variable metric random pursuit
Variable metric random pursuit

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Variable metric random pursuit
Journal Article

Variable metric random pursuit

2016
Request Book From Autostore and Choose the Collection Method
Overview
We consider unconstrained randomized optimization of smooth convex objective functions in the gradient-free setting. We analyze Random Pursuit (RP) algorithms with fixed (F-RP) and variable metric (V-RP). The algorithms only use zeroth-order information about the objective function and compute an approximate solution by repeated optimization over randomly chosen one-dimensional subspaces. The distribution of search directions is dictated by the chosen metric. Variable Metric RP uses novel variants of a randomized zeroth-order Hessian approximation scheme recently introduced by Leventhal and Lewis (Optimization 60(3):329–345, 2011 . doi: 10.1080/02331930903100141 ). We here present (1) a refined analysis of the expected single step progress of RP algorithms and their global convergence on (strictly) convex functions and (2) novel convergence bounds for V-RP on strongly convex functions. We also quantify how well the employed metric needs to match the local geometry of the function in order for the RP algorithms to converge with the best possible rate. Our theoretical results are accompanied by numerical experiments, comparing V-RP with the derivative-free schemes CMA-ES, Implicit Filtering, Nelder–Mead, NEWUOA, Pattern-Search and Nesterov’s gradient-free algorithms.