MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Tropical Texture Determination by Proximal Sensing Using a Regional Spectral Library and Its Relationship with Soil Classification
Tropical Texture Determination by Proximal Sensing Using a Regional Spectral Library and Its Relationship with Soil Classification
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Tropical Texture Determination by Proximal Sensing Using a Regional Spectral Library and Its Relationship with Soil Classification
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Tropical Texture Determination by Proximal Sensing Using a Regional Spectral Library and Its Relationship with Soil Classification
Tropical Texture Determination by Proximal Sensing Using a Regional Spectral Library and Its Relationship with Soil Classification

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Tropical Texture Determination by Proximal Sensing Using a Regional Spectral Library and Its Relationship with Soil Classification
Tropical Texture Determination by Proximal Sensing Using a Regional Spectral Library and Its Relationship with Soil Classification
Journal Article

Tropical Texture Determination by Proximal Sensing Using a Regional Spectral Library and Its Relationship with Soil Classification

2016
Request Book From Autostore and Choose the Collection Method
Overview
The search for sustainable land use has increased in Brazil due to the important role that agriculture plays in the country. Soil detailed classification is related with texture attribute. How can one discriminate the same soil class with different textures using proximal soil sensing, as to reach surveys, land use planning and increase crop productivity? This study aims to evaluate soil texture using a regional spectral library and its usefulness on classification. We collected 3750 soil samples covering 3 million ha within strong soil class variations in São Paulo State. The spectral analyses of soil samples from topsoil and subsoil were measured in laboratory (400–2500 nm). The potential of a regional soil spectral library was evaluated on the discrimination of soil texture. We considered two types of soil texture systems, one related with soil classification and another with soil managements. The soil line technique was used to assess differentiation between soil textural groups. Soil spectra were summarized by principal component analysis (PCA) to select relevant information on the spectra. Partial least squares regression (PLSR) was used to predict texture. Spectral curves indicated different shapes according to soil texture and discriminated particle size classes from clayey to sandy soils. In the visible region, differences were small because of the organic matter, while the short wave infrared (SWIR) region showed more differences; thus, soil texture variation could be differentiated by quartz. Angulation differences are on a spectral curve from NIR to SWIR. The statistical models predicted clay and sand levels with R2 = 0.93 and 0.96, respectively. Indeed, we achieved a difference of 1.2% between laboratory and spectroscopy measurement for clay. The spectral information was useful to classify Ferralsols with different texture classification. In addition, the spectra differentiated Lixisols from Ferralsols and Arenosols. This work can help the development of computer programs that allow soil texture classification and subsequent digital soil mapping at detailed scales. In addition, it complies with requirements for sustainable land use and soil management.