MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Histologic tissue components provide major cues for machine learning-based prostate cancer detection and grading on prostatectomy specimens
Histologic tissue components provide major cues for machine learning-based prostate cancer detection and grading on prostatectomy specimens
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Histologic tissue components provide major cues for machine learning-based prostate cancer detection and grading on prostatectomy specimens
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Histologic tissue components provide major cues for machine learning-based prostate cancer detection and grading on prostatectomy specimens
Histologic tissue components provide major cues for machine learning-based prostate cancer detection and grading on prostatectomy specimens

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Histologic tissue components provide major cues for machine learning-based prostate cancer detection and grading on prostatectomy specimens
Histologic tissue components provide major cues for machine learning-based prostate cancer detection and grading on prostatectomy specimens
Journal Article

Histologic tissue components provide major cues for machine learning-based prostate cancer detection and grading on prostatectomy specimens

2020
Request Book From Autostore and Choose the Collection Method
Overview
Automatically detecting and grading cancerous regions on radical prostatectomy (RP) sections facilitates graphical and quantitative pathology reporting, potentially benefitting post-surgery prognosis, recurrence prediction, and treatment planning after RP. Promising results for detecting and grading prostate cancer on digital histopathology images have been reported using machine learning techniques. However, the importance and applicability of those methods have not been fully investigated. We computed three-class tissue component maps (TCMs) from the images, where each pixel was labeled as nuclei, lumina, or other. We applied seven different machine learning approaches: three non-deep learning classifiers with features extracted from TCMs, and four deep learning, using transfer learning with the 1) TCMs, 2) nuclei maps, 3) lumina maps, and 4) raw images for cancer detection and grading on whole-mount RP tissue sections. We performed leave-one-patient-out cross-validation against expert annotations using 286 whole-slide images from 68 patients. For both cancer detection and grading, transfer learning using TCMs performed best. Transfer learning using nuclei maps yielded slightly inferior overall performance, but the best performance for classifying higher-grade cancer. This suggests that 3-class TCMs provide the major cues for cancer detection and grading primarily using nucleus features, which are the most important information for identifying higher-grade cancer.