MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Monitoring and Analyzing Driver Physiological States Based on Automotive Electronic Identification and Multimodal Biometric Recognition Methods
Monitoring and Analyzing Driver Physiological States Based on Automotive Electronic Identification and Multimodal Biometric Recognition Methods
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Monitoring and Analyzing Driver Physiological States Based on Automotive Electronic Identification and Multimodal Biometric Recognition Methods
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Monitoring and Analyzing Driver Physiological States Based on Automotive Electronic Identification and Multimodal Biometric Recognition Methods
Monitoring and Analyzing Driver Physiological States Based on Automotive Electronic Identification and Multimodal Biometric Recognition Methods

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Monitoring and Analyzing Driver Physiological States Based on Automotive Electronic Identification and Multimodal Biometric Recognition Methods
Monitoring and Analyzing Driver Physiological States Based on Automotive Electronic Identification and Multimodal Biometric Recognition Methods
Journal Article

Monitoring and Analyzing Driver Physiological States Based on Automotive Electronic Identification and Multimodal Biometric Recognition Methods

2024
Request Book From Autostore and Choose the Collection Method
Overview
In an intelligent driving environment, monitoring the physiological state of drivers is crucial for ensuring driving safety. This paper proposes a method for monitoring and analyzing driver physiological characteristics by combining electronic vehicle identification (EVI) with multimodal biometric recognition. The method aims to efficiently monitor the driver’s heart rate, breathing frequency, emotional state, and fatigue level, providing real-time feedback to intelligent driving systems to enhance driving safety. First, considering the precision, adaptability, and real-time capabilities of current physiological signal monitoring devices, an intelligent cushion integrating MEMSs (Micro-Electro-Mechanical Systems) and optical sensors is designed. This cushion collects heart rate and breathing frequency data in real time without disrupting the driver, while an electrodermal activity monitoring system captures electromyography data. The sensor layout is optimized to accommodate various driving postures, ensuring accurate data collection. The EVI system assigns a unique identifier to each vehicle, linking it to the physiological data of different drivers. By combining the driver physiological data with the vehicle’s operational environment data, a comprehensive multi-source data fusion system is established for a driving state evaluation. Secondly, a deep learning model is employed to analyze physiological signals, specifically combining Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks. The CNN extracts spatial features from the input signals, while the LSTM processes time-series data to capture the temporal characteristics. This combined model effectively identifies and analyzes the driver’s physiological state, enabling timely anomaly detection. The method was validated through real-vehicle tests involving multiple drivers, where extensive physiological and driving behavior data were collected. Experimental results show that the proposed method significantly enhances the accuracy and real-time performance of physiological state monitoring. These findings highlight the effectiveness of combining EVI with multimodal biometric recognition, offering a reliable means for assessing driver states in intelligent driving systems. Furthermore, the results emphasize the importance of personalizing adjustments based on individual driver differences for more effective monitoring.