MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Uniqueness and Dependence of Bacterial Communities on Microplastics: Comparison with Water, Sediment, and Soil
Uniqueness and Dependence of Bacterial Communities on Microplastics: Comparison with Water, Sediment, and Soil
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Uniqueness and Dependence of Bacterial Communities on Microplastics: Comparison with Water, Sediment, and Soil
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Uniqueness and Dependence of Bacterial Communities on Microplastics: Comparison with Water, Sediment, and Soil
Uniqueness and Dependence of Bacterial Communities on Microplastics: Comparison with Water, Sediment, and Soil

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Uniqueness and Dependence of Bacterial Communities on Microplastics: Comparison with Water, Sediment, and Soil
Uniqueness and Dependence of Bacterial Communities on Microplastics: Comparison with Water, Sediment, and Soil
Journal Article

Uniqueness and Dependence of Bacterial Communities on Microplastics: Comparison with Water, Sediment, and Soil

2022
Request Book From Autostore and Choose the Collection Method
Overview
Revealing the dependence and uniqueness of microbial communities on microplastics could help us better understand the assembly of the microplastic microbial community in river ecosystems. In this study, we investigated the composition and ecological functions of the bacterial community on microplastics from the Three Gorges Reservoir area compared with those in water, sediment, and soil at species-level via full-length 16S rRNA gene sequencing. The results showed that the full-length 16S rRNA sequencing provided more detail and accurate taxa resolution of the bacterial community in microplastics (100%), water (99.90%), sediment (99.95%), and soil (100%). Betaproteobacteriales were the most abundant bacteria in microplastics (14.1%), water (32.3%), sediments (27.2%), and soil (21.0%). Unexpectedly, oligotrophic SAR11 clade was the third abundant bacteria (8.51%) and dominated the ecological functions of the bacterial community in water, but it was less observed on microplastics, with a relative abundance of 2.73×10-5. However, four opportunistic pathogens identified at the species level were selectively enriched on microplastics. Stenotrophomonas maltophilia was the main opportunistic pathogen on microplastics (0.29%). Sediment rather than soil and water may be contributed mostly to pathogens on microplastics. Moreover, some bacteria species with the biodegradation function of microplastics were enriched on microplastics, such as bacteria Rhodobacter sp., and endemic bacteria Luteimonas sp. The distinct bacteria composition on microplastics enhanced several ecological functions, such as xenobiotics biodegradation, which allows screening the bacteria with the biodegradation function of microplastics through long-term exposure.