MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Measuring network dynamics of opioid overdose deaths in the United States
Measuring network dynamics of opioid overdose deaths in the United States
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Measuring network dynamics of opioid overdose deaths in the United States
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Measuring network dynamics of opioid overdose deaths in the United States
Measuring network dynamics of opioid overdose deaths in the United States

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Measuring network dynamics of opioid overdose deaths in the United States
Measuring network dynamics of opioid overdose deaths in the United States
Journal Article

Measuring network dynamics of opioid overdose deaths in the United States

2024
Request Book From Autostore and Choose the Collection Method
Overview
The US opioid overdose epidemic has been a major public health concern in recent decades. There has been increasing recognition that its etiology is rooted in part in the social contexts that mediate substance use and access; however, reliable statistical measures of social influence are lacking in the literature. We use Facebook’s social connectedness index (SCI) as a proxy for real-life social networks across diverse spatial regions that help quantify social connectivity across different spatial units. This is a measure of the relative probability of connections between localities that offers a unique lens to understand the effects of social networks on health outcomes. We use SCI to develop a variable, called “deaths in social proximity”, to measure the influence of social networks on opioid overdose deaths (OODs) in US counties. Our results show a statistically significant effect size for deaths in social proximity on OODs in counties in the United States, controlling for spatial proximity, as well as demographic and clinical covariates. The effect size of standardized deaths in social proximity in our cluster-robust linear regression model indicates that a one-standard-deviation increase, equal to 11.70 more deaths per 100,000 population in the social proximity of ego counties in the contiguous United States, is associated with thirteen more deaths per 100, 000 population in ego counties. To further validate our findings, we performed a series of robustness checks using a network autocorrelation model to account for social network effects, a spatial autocorrelation model to capture spatial dependencies, and a two-way fixed-effect model to control for unobserved spatial and time-invariant characteristics. These checks consistently provide statistically robust evidence of positive social influence on OODs in US counties. Our analysis provides a pathway for public health interventions informed by social network structures. The statistical robustness of our primary variable of interest, deaths in social proximity, supports the hypothesis of a social network effect on OODs. Using agent-based modeling (ABM) to simulate social networks can offer an effective method to design interventions that incorporate the dynamics of social networks for maximum impact.