MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Spin environment of a superconducting qubit in high magnetic fields
Spin environment of a superconducting qubit in high magnetic fields
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Spin environment of a superconducting qubit in high magnetic fields
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Spin environment of a superconducting qubit in high magnetic fields
Spin environment of a superconducting qubit in high magnetic fields

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Spin environment of a superconducting qubit in high magnetic fields
Spin environment of a superconducting qubit in high magnetic fields
Journal Article

Spin environment of a superconducting qubit in high magnetic fields

2025
Request Book From Autostore and Choose the Collection Method
Overview
Superconducting qubits equipped with quantum non-demolition readout and active feedback can be used as information engines to probe and manipulate microscopic degrees of freedom, whether intentionally designed or naturally occurring in their environment. In the case of spin systems, the required magnetic field bias presents a challenge for superconductors and Josephson junctions. Here we demonstrate a granular aluminum nanojunction fluxonium qubit (gralmonium) with spectrum and coherence resilient to fields beyond one Tesla. Sweeping the field reveals a paramagnetic spin-1/2 ensemble, which is the dominant gralmonium loss mechanism when the electron spin resonance matches the qubit. We also observe a suppression of MHz range fast flux noise in magnetic field, suggesting the freezing of surface spins. Using an active state stabilization sequence, the qubit hyperpolarizes long-lived two-level systems (TLSs) in its environment, previously speculated to be spins. Surprisingly, the coupling to these TLSs is unaffected by magnetic fields, leaving the question of their origin open. The robust operation of gralmoniums in Tesla fields offers new opportunities to explore unresolved questions in spin environment dynamics and facilitates hybrid architectures linking superconducting qubits with spin systems. Superconducting qubits are highly sensitive to magnetic fields, limiting their integration with spin-based quantum systems. Here, the authors demonstrate a superconducting qubit that maintains coherence beyond 1T, revealing spin-1/2 impurities and magnetic freezing of flux noise.