MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Gαi2- and Gαi3-Specific Regulation of Voltage-Dependent L-Type Calcium Channels in Cardiomyocytes
Gαi2- and Gαi3-Specific Regulation of Voltage-Dependent L-Type Calcium Channels in Cardiomyocytes
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Gαi2- and Gαi3-Specific Regulation of Voltage-Dependent L-Type Calcium Channels in Cardiomyocytes
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Gαi2- and Gαi3-Specific Regulation of Voltage-Dependent L-Type Calcium Channels in Cardiomyocytes
Gαi2- and Gαi3-Specific Regulation of Voltage-Dependent L-Type Calcium Channels in Cardiomyocytes

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Gαi2- and Gαi3-Specific Regulation of Voltage-Dependent L-Type Calcium Channels in Cardiomyocytes
Gαi2- and Gαi3-Specific Regulation of Voltage-Dependent L-Type Calcium Channels in Cardiomyocytes
Journal Article

Gαi2- and Gαi3-Specific Regulation of Voltage-Dependent L-Type Calcium Channels in Cardiomyocytes

2011
Request Book From Autostore and Choose the Collection Method
Overview
Two pertussis toxin sensitive G(i) proteins, G(i2) and G(i3), are expressed in cardiomyocytes and upregulated in heart failure. It has been proposed that the highly homologous G(i) isoforms are functionally distinct. To test for isoform-specific functions of G(i) proteins, we examined their role in the regulation of cardiac L-type voltage-dependent calcium channels (L-VDCC). Ventricular tissues and isolated myocytes were obtained from mice with targeted deletion of either Gα(i2) (Gα(i2) (-/-)) or Gα(i3) (Gα(i3) (-/-)). mRNA levels of Gα(i/o) isoforms and L-VDCC subunits were quantified by real-time PCR. Gα(i) and Ca(v)α(1) protein levels as well as protein kinase B/Akt and extracellular signal-regulated kinases 1/2 (ERK1/2) phosphorylation levels were assessed by immunoblot analysis. L-VDCC function was assessed by whole-cell and single-channel current recordings. In cardiac tissue from Gα(i2) (-/-) mice, Gα(i3) mRNA and protein expression was upregulated to 187 ± 21% and 567 ± 59%, respectively. In Gα(i3) (-/-) mouse hearts, Gα(i2) mRNA (127 ± 5%) and protein (131 ± 10%) levels were slightly enhanced. Interestingly, L-VDCC current density in cardiomyocytes from Gα(i2) (-/-) mice was lowered (-7.9 ± 0.6 pA/pF, n = 11, p<0.05) compared to wild-type cells (-10.7 ± 0.5 pA/pF, n = 22), whereas it was increased in myocytes from Gα(i3) (-/-) mice (-14.3 ± 0.8 pA/pF, n = 14, p<0.05). Steady-state inactivation was shifted to negative potentials, and recovery kinetics slowed in the absence of Gα(i2) (but not of Gα(i3)) and following treatment with pertussis toxin in Gα(i3) (-/-). The pore forming Ca(v)α(1) protein level was unchanged in all mouse models analyzed, similar to mRNA levels of Ca(v)α(1) and Ca(v)β(2) subunits. Interestingly, at the cellular signalling level, phosphorylation assays revealed abolished carbachol-triggered activation of ERK1/2 in mice lacking Gα(i2). Our data provide novel evidence for an isoform-specific modulation of L-VDCC by Gα(i) proteins. In particular, loss of Gα(i2) is reflected by alterations in channel kinetics and likely involves an impairment of the ERK1/2 signalling pathway.