MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Geochemistry, Rb-Sr whole rock age and Sr-Nd isotopic constraints on the Variscan A1-type granite from Azegour area in the Marrakech High Atlas (Moroccan Meseta) and their geodynamic implications
Geochemistry, Rb-Sr whole rock age and Sr-Nd isotopic constraints on the Variscan A1-type granite from Azegour area in the Marrakech High Atlas (Moroccan Meseta) and their geodynamic implications
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Geochemistry, Rb-Sr whole rock age and Sr-Nd isotopic constraints on the Variscan A1-type granite from Azegour area in the Marrakech High Atlas (Moroccan Meseta) and their geodynamic implications
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Geochemistry, Rb-Sr whole rock age and Sr-Nd isotopic constraints on the Variscan A1-type granite from Azegour area in the Marrakech High Atlas (Moroccan Meseta) and their geodynamic implications
Geochemistry, Rb-Sr whole rock age and Sr-Nd isotopic constraints on the Variscan A1-type granite from Azegour area in the Marrakech High Atlas (Moroccan Meseta) and their geodynamic implications

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Geochemistry, Rb-Sr whole rock age and Sr-Nd isotopic constraints on the Variscan A1-type granite from Azegour area in the Marrakech High Atlas (Moroccan Meseta) and their geodynamic implications
Geochemistry, Rb-Sr whole rock age and Sr-Nd isotopic constraints on the Variscan A1-type granite from Azegour area in the Marrakech High Atlas (Moroccan Meseta) and their geodynamic implications
Journal Article

Geochemistry, Rb-Sr whole rock age and Sr-Nd isotopic constraints on the Variscan A1-type granite from Azegour area in the Marrakech High Atlas (Moroccan Meseta) and their geodynamic implications

2024
Request Book From Autostore and Choose the Collection Method
Overview
In the northern part of the Marrakech High Atlas (MHA), along the southern Variscan segment of the Western Meseta, a Variscan granitic intrusion crops out, intruding metasediments and meta-volcanosedimentary rocks of Early Cambrian to Ordovician age. A new whole-rock Rb-Sr isochron age of 268 ± 9 Ma for the granite, combined with a previously published whole-rock Rb-Sr radiometric dating (271 ± 3 Ma), reveals a post-kinematic (tectonic) character with regard to the main Variscan deformational event, belonging within the tectonic context of the Moroccan Variscan orogenic belt. Geochemically, the Azegour intrusion is metaluminous to peraluminous and exhibits a calc-alkaline affinity with a ferruginous composition. The massif shows an extremely differentiated character (SiO = 77.53–78.14 per cent), K O and high total alkali contents, FeO /(FeO + MgO) and Ga/Al ratios, which have typical characteristics of an A-type granite. In addition, the granite contains high concentrations of LREE (La /Sm = 7.9–13.67) relative to HREE (La /Yb = 4.81–11.61) and a well-defined Eu negative anomaly (Eu/Eu* = 0.44–0.75). The granitic samples exhibit a strong enrichment of the most incompatible elements (Rb /Yb = 69.84–159.98) and a strong depletion of Ba, Sr, Eu, Nb, P and Ti. These characteristics are similar to those of A -type granites. The absence of mineralogy typical of an S-type granite, combined with its weakly peraluminous character [A/CNK (molar Al /CaO+Na O+K O) = 1,013–1,045], suggest that there is little or no significant involvement of supracrustal sources in the petrogenesis of the intrusion studied. Despite the strongly differentiated character of Azegour granitic rocks samples, their multi-element patterns shows many similarities to those of I-type granitoids, which has led to postulate that the parental liquids of A -type were derived from partial melting of mafic magmas. The representative samples studied show less depleted εNd values of −0.94 to −4.85 and lower positive to slightly negative εSr values of −1.45 to 9.32. The isotopic data suggest that the Azegour granite was emplaced 270 myr ago, apparently generated by partial melting of a mafic/intermediate magma source in the lower crust as a result of the underplating of the asthenosphere mantle-derived Oceanic Island Basalt-like magmas. Alternatively, their isotopic signatures also can be attributed to the interaction and/or hybridisation of basaltic liquids derived from the mantle with these lower crust materials. The generated parental magma probably occurred at deep structural levels and involved fractional crystallisation processes by the separation of a mineralogical association composed of plagioclase + potassium feldspar ± biotite ± amphibole ± sphene ± apatite. The whole-rock Rb-Sr age of 268 ± 9 Ma, whole-rock geochemistry and Sr-Nd isotopic compositions of εNd and εSr , combined with fieldwork data, suggest that the Azegour granite was emplaced during the later stage of compressional Variscan events in the MHA.