MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Improvements in the Engineering Properties of Cementitious Composites Using Nano-Sized Cement and Nano-Sized Additives
Improvements in the Engineering Properties of Cementitious Composites Using Nano-Sized Cement and Nano-Sized Additives
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Improvements in the Engineering Properties of Cementitious Composites Using Nano-Sized Cement and Nano-Sized Additives
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Improvements in the Engineering Properties of Cementitious Composites Using Nano-Sized Cement and Nano-Sized Additives
Improvements in the Engineering Properties of Cementitious Composites Using Nano-Sized Cement and Nano-Sized Additives

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Improvements in the Engineering Properties of Cementitious Composites Using Nano-Sized Cement and Nano-Sized Additives
Improvements in the Engineering Properties of Cementitious Composites Using Nano-Sized Cement and Nano-Sized Additives
Journal Article

Improvements in the Engineering Properties of Cementitious Composites Using Nano-Sized Cement and Nano-Sized Additives

2022
Request Book From Autostore and Choose the Collection Method
Overview
The findings of an extensive experimental research study on the usage of nano-sized cement powder and other additives combined to form cement–fine-aggregate matrices are discussed in this work. In the laboratory, dry and wet methods were used to create nano-sized cements. The influence of these nano-sized cements, nano-silica fumes, and nano-fly ash in different proportions was studied to the evaluate the engineering properties of the cement–fine-aggregate matrices concerning normal-sized, commercially available cement. The composites produced with modified cement–fine-aggregate matrices were subjected to microscopic-scale analyses using a petrographic microscope, a Scanning Electron Microscope (SEM), and a Transmission Electron Microscope (TEM). These studies unravelled the placement and behaviour of additives in controlling the engineering properties of the mix. The test results indicated that nano-cement and nano-sized particles improved the engineering properties of the hardened cement matrix. The wet-ground nano-cement showed the best result, 40 MPa 28th-day compressive strength, without mixing any additive compared with ordinary and dry-ground cements. The mix containing 50:50 normal and wet-ground cement exhibited 37.20 MPa 28th-day compressive strength. All other mixes with nano-sized dry cement, silica fume, and fly ash with different permutations and combinations gave better results than the normal-cement–fine-aggregate mix. The petrographic studies and the Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM) analyses further validated the above findings. Statistical analyses and techniques such as correlation and stepwise multiple regression analysis were conducted to compose a predictive equation to calculate the 28th-day compressive strength. In addition to these methods, a repeated measures Analysis of Variance (ANOVA) was also implemented to analyse the statistically significant differences among three differently timed strength readings.