MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Estimating Channel Parameters and Discharge at River Network Scale Using Hydrological‐Hydraulic Models, SWOT and Multi‐Satellite Data
Estimating Channel Parameters and Discharge at River Network Scale Using Hydrological‐Hydraulic Models, SWOT and Multi‐Satellite Data
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Estimating Channel Parameters and Discharge at River Network Scale Using Hydrological‐Hydraulic Models, SWOT and Multi‐Satellite Data
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Estimating Channel Parameters and Discharge at River Network Scale Using Hydrological‐Hydraulic Models, SWOT and Multi‐Satellite Data
Estimating Channel Parameters and Discharge at River Network Scale Using Hydrological‐Hydraulic Models, SWOT and Multi‐Satellite Data

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Estimating Channel Parameters and Discharge at River Network Scale Using Hydrological‐Hydraulic Models, SWOT and Multi‐Satellite Data
Estimating Channel Parameters and Discharge at River Network Scale Using Hydrological‐Hydraulic Models, SWOT and Multi‐Satellite Data
Journal Article

Estimating Channel Parameters and Discharge at River Network Scale Using Hydrological‐Hydraulic Models, SWOT and Multi‐Satellite Data

2025
Request Book From Autostore and Choose the Collection Method
Overview
The unprecedented hydraulic visibility of rivers surfaces deformation with SWOT satellite offers tremendous information for improving hydrological‐hydraulic models and discharge estimations for rivers worldwide. However, estimating the uncertain or unknown parameters of hydraulic models, such as inflow discharges, bathymetry, and friction parameters, poses a high‐dimensional inverse problem, which is ill‐posed if based solely on altimetry observations. To address this, we couple the hydraulic model with a semi‐distributed hydrological model, to constrain the ill‐posed inverse problem with sufficiently accurate initial estimates of inflows at the network upstreams. A robust variational data assimilation of water surface elevation (WSE) data into a 1D Saint‐Venant river network model, enables the inference of inflow hydrographs, effective bathymetry, and spatially distributed friction at network scale. The method is demonstrated on the large, complex, and poorly gauged Maroni basin in French Guiana. The pre‐processing chain enables (a) building an effective hydraulic model geometry from drifting ICESat‐2 WSE altimetry and Sentinel‐1 width; (b) filtering noisy SWOT Level 2 WSE data before assimilation. A systematic improvement is achieved in fitting the assimilated WSE (85% cost improvement), and in validating discharge at 5 gauges within the network. For assimilation of SWOT data alone, 70% of data‐model fit is in [−0.25;0.25m] $[-0.25;\\,0.25\\,\\mathrm{m}]$ and the discharge NRMSE ranges between 0.05 and 0.18 (18%–71% improvement from prior). The high density of SWOT WSE enables the inferrence of detailed spatial variability in channel bottom elevation and friction, and inflows timeseries. The approach is transferable to other rivers networks worldwide.