MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Applying neural networks to predict HPC-I/O bandwidth over seismic data on lustre file system for ExSeisDat
Applying neural networks to predict HPC-I/O bandwidth over seismic data on lustre file system for ExSeisDat
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Applying neural networks to predict HPC-I/O bandwidth over seismic data on lustre file system for ExSeisDat
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Applying neural networks to predict HPC-I/O bandwidth over seismic data on lustre file system for ExSeisDat
Applying neural networks to predict HPC-I/O bandwidth over seismic data on lustre file system for ExSeisDat

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Applying neural networks to predict HPC-I/O bandwidth over seismic data on lustre file system for ExSeisDat
Applying neural networks to predict HPC-I/O bandwidth over seismic data on lustre file system for ExSeisDat
Journal Article

Applying neural networks to predict HPC-I/O bandwidth over seismic data on lustre file system for ExSeisDat

2022
Request Book From Autostore and Choose the Collection Method
Overview
HPC or super-computing clusters are designed for executing computationally intensive operations that typically involve large scale I/O operations. This most commonly involves using a standard MPI library implemented in C/C++. The MPI-I/O performance in HPC clusters tends to vary significantly over a range of configuration parameters that are generally not taken into account by the algorithm. It is commonly left to individual practitioners to optimise I/O on a case by case basis at code level. This can often lead to a range of unforeseen outcomes. The ExSeisDat utility is built on top of the native MPI-I/O library comprising of Parallel I/O and Workflow Libraries to process seismic data encapsulated in SEG-Y file format. The SEG-Y File data structure is complex in nature, due to the alternative arrangement of trace header and trace data. Its size scales to petabytes and the chances of I/O performance degradation are further increased by ExSeisDat. This research paper presents a novel study of the changing I/O performance in terms of bandwidth, with the use of parallel plots against various MPI-I/O, Lustre (Parallel) File System and SEG-Y File parameters. Another novel aspect of this research is the predictive modelling of MPI-I/O behaviour over SEG-Y File benchmarks using Artificial Neural Networks (ANNs). The accuracy ranges from 62.5% to 96.5% over the set of trained ANN models. The computed Mean Square Error (MSE), Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE) values further support the generalisation of the prediction models. This paper demonstrates that by using our ANNs prediction technique, the configurations can be tuned beforehand to avoid poor I/O performance.