MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Comparison of adsorption behavior studies of methylene blue by microalga residue and its biochars produced at different pyrolytic temperatures
Comparison of adsorption behavior studies of methylene blue by microalga residue and its biochars produced at different pyrolytic temperatures
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Comparison of adsorption behavior studies of methylene blue by microalga residue and its biochars produced at different pyrolytic temperatures
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Comparison of adsorption behavior studies of methylene blue by microalga residue and its biochars produced at different pyrolytic temperatures
Comparison of adsorption behavior studies of methylene blue by microalga residue and its biochars produced at different pyrolytic temperatures

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Comparison of adsorption behavior studies of methylene blue by microalga residue and its biochars produced at different pyrolytic temperatures
Comparison of adsorption behavior studies of methylene blue by microalga residue and its biochars produced at different pyrolytic temperatures
Journal Article

Comparison of adsorption behavior studies of methylene blue by microalga residue and its biochars produced at different pyrolytic temperatures

2021
Request Book From Autostore and Choose the Collection Method
Overview
The adsorption behaviors of methylene blue (MB) on microalga residue powder (MRP) and biochars derived from microalga residue (MRB) produced at different pyrolytic temperatures were compared. Six biochars were prepared from residual Chlorella sp. and Spirulina sp. at different pyrolytic temperatures in the range of 200–550 °C. The adsorption kinetics, isotherms, thermodynamics, and the effect of pH were studied, and chemical analyses of MB-loaded MRP and MRB were conducted using SEM, FTIR, and XPS techniques. The results found that the pseudo-second-order, Elovich, and Freundlich models could effectively describe the MB adsorption process on MRP and MRB. The thermodynamic results confirmed that the adsorption processes were spontaneous and endothermic. Further, MRP showed an excellent adsorption ability on MB through electrostatic interaction, complexation with oxygen/nitrogen-containing functional groups and π-π interaction. However, massive oxygen-containing functional groups after pyrolysis were lost, leading to a significant decrease in the adsorption capacity of MRB on MB. This phenomenon was further observed with increasing pyrolytic temperature. Overall, this study demonstrated that microalga residue performed better for MB removal compared with their pyrolyzed analogs. Graphical abstract